A description of the event horizon of a perturbed Schwarzschild black hole is
provided in terms of the intrinsic and extrinsic geometries of the null
hypersurface. This description relies on a Gauss-Codazzi theory of null
hypersurfaces embedded in spacetime, which extends the standard theory of
spacelike and timelike hypersurfaces involving the first and second fundamental
forms. We show that the intrinsic geometry of the event horizon is invariant
under a reparameterization of the null generators, and that the extrinsic
geometry depends on the parameterization. Stated differently, we show that
while the extrinsic geometry depends on the choice of gauge, the intrinsic
geometry is gauge invariant. We apply the formalism to solutions to the vacuum
field equations that describe a tidally deformed black hole. In a first
instance we consider a slowly-varying, quadrupolar tidal field imposed on the
black hole, and in a second instance we examine the tide raised during a close
parabolic encounter between the black hole and a small orbiting body.Comment: 27 pages, 4 figure