70,151 research outputs found

    Semiempirical Modeling of Reset Transitions in Unipolar Resistive-Switching based Memristors

    Get PDF
    We have measured the transition process from the high to low resistivity states, i.e., the reset process of resistive switching based memristors based on Ni/HfO2/Si-n+ structures, and have also developed an analytical model for their electrical characteristics. When the characteristic curves are plotted in the current-voltage (I-V) domain a high variability is observed. In spite of that, when the same curves are plotted in the charge-flux domain (Q-phi), they can be described by a simple model containing only three parameters: the charge (Qrst) and the flux (rst) at the reset point, and an exponent, n, relating the charge and the flux before the reset transition. The three parameters can be easily extracted from the Q-phi plots. There is a strong correlation between these three parameters, the origin of which is still under study

    Collapse of the Gd3+Gd^{3+} ESR fine structure throughout the coherent temperature of the Gd-doped Kondo Semiconductor CeFe4P12CeFe_{4}P_{12}

    Get PDF
    Experiments on the Gd3+Gd^{3+} Electron Spin Resonance (ESR) in the filled skutterudite Ce1−xGdxFe4P12Ce_{1-x}Gd_{x}Fe_{4}P_{12} (x≈0.001x \approx 0.001), at temperatures where the host resistivity manifests a smooth insulator-metal crossover, provides evidence of the underlying Kondo physics associated with this system. At low temperatures (below T≈KT \approx K), Ce1−xGdxFe4P12Ce_{1-x}Gd_{x}Fe_{4}P_{12} behaves as a Kondo-insulator with a relatively large hybridization gap, and the Gd3+Gd^{3+} ESR spectra displays a fine structure with lorentzian line shape, typical of insulating media. The electronic gap is attributed to the large hybridization present in the coherent regime of a Kondo lattice, when Ce 4f-electrons cooperate with band properties at half-filling. Mean-field calculations suggest that the electron-phonon interaction is fundamental at explaining the strong 4f-electron hybridization in this filled skutterudite. The resulting electronic structure is strongly temperature dependent, and at about T∗≈160KT^{*} \approx 160 K the system undergoes an insulator-to-metal transition induced by the withdrawal of 4f-electrons from the Fermi volume, the system becoming metallic and non-magnetic. The Gd3+Gd^{3+} ESR fine structure coalesces into a single dysonian resonance, as in metals. Still, our simulations suggest that exchange-narrowing via the usual Korringa mechanism, alone, is not capable of describing the thermal behavior of the ESR spectra in the entire temperature region (4.24.2 - 300300 K). We propose that temperature activated fluctuating-valence of the Ce ions is the missing ingredient that, added to the usual exchange-narrowing mechanism, fully describes this unique temperature dependence of the Gd3+Gd^{3+} ESR fine structure observed in Ce1−xGdxFe4P12Ce_{1-x}Gd_{x}Fe_{4}P_{12}.Comment: 19 pages, 6 figure

    The effect of the range of interaction on the phase diagram of a globular protein

    Full text link
    Thermodynamic perturbation theory is applied to the model of globular proteins studied by ten Wolde and Frenkel (Science 277, pg. 1976) using computer simulation. It is found that the reported phase diagrams are accurately reproduced. The calculations show how the phase diagram can be tuned as a function of the lengthscale of the potential.Comment: 20 pages, 5 figure

    Why are massive O-rich AGB stars in our Galaxy not S-stars?

    Full text link
    We present the main results derived from a chemical analysis carried out on a large sample of galactic O-rich AGB stars using high resolution optical spectroscopy (R~40,000-50,000) with the intention of studying their lithium abundances and/or possible s-process element enrichment. Our chemical analysis shows that some stars are lithium overabundant while others are not. The observed lithium overabundances are interpreted as a clear signature of the activation of the so-called ``Hot Bottom Burning'' (HBB) process in massive galactic O-rich AGB stars, as predicted by the models. However, these stars do not show the zirconium enhancement (taken as a representative for the s-process element enrichment) associated to the third dredge-up phase following thermal pulses. Our results suggest that the more massive O-rich AGB stars in our Galaxy behave differently from those in the Magellanic Clouds, which are both Li- and s-process-rich (S-type stars). Reasons for this unexpected result are discussed. We conclude that metallicity is probably the main responsible for the differences observed and suggest that it may play a more important role than generally assumed in the chemical evolution of AGB stars.Comment: 4 pages, 2 figures, to appear in the proceedings of the conference "Planetary Nebulae as astronomical tools" held in Gdansk, Poland, jun 28/jul 02, 200

    Hot electron transport in Ballistic Electron Emission Spectroscopy: band structure effects and k-space currents

    Full text link
    Using a Green's function approach, we investigate band structure effects in the BEEM current distribution in reciprocal space. In the elastic limit, this formalism provides a 'parameter free' solution to the BEEM problem. At low temperatures, and for thin metallic layers, the elastic approximation is enough to explain the experimental I(V) curves at low voltages. At higher voltages inelastic effects are approximately taken into account by introducing an effective RPA-electron lifetime, much in similarity with LEED theory. For thick films, however, additional damping mechanisms are required to obtain agreement with experiment.Comment: 4 pages, 3 postscript figures, revte
    • 

    corecore