7 research outputs found

    Loss of the SPHF homologue Slr1768 leads to a catastrophic failure in the maintenance of thylakoid membranes in synechocystis sp. PCC 6803

    Get PDF
    Background: In cyanobacteria the photosystems are localised to, and maintained in, specialist membranes called the thylakoids. The mechanism driving the biogenesis of the thylakoid membranes is still an open question, with only two potential biogenesis factors, Vipp1 and Alb3 currently identified. Methodology/Principal Findings: We generated a slr1768 knockout using the pGEM T-easy vector and REDIRECT. By comparing growth and pigment content (chlorophyll a fluoresence) of the Delta slr1768 mutant with the wild-type, we found that Dslr1768 has a conditional phenotype; specifically under high light conditions (130 mu mol m(-2) s(-1)) thylakoid biogenesis is disrupted leading to cell death on a scale of days. The thylakoids show considerable disruption, with loss of both structure and density, while chlorophyll a density decreases with the loss of thylakoids, although photosynthetic efficiency is unaffected. Under low light (30 mu mol m(-2) s(-1)) the phenotype is significantly reduced, with a growth rate similar to the wildtype and only a low frequency of cells with evident thylakoid disruption. Conclusions/Significance: This is the first example of a gene that affects the maintenance of the thylakoid membranes specifically under high light, and which displays a phenotype dependent on light intensity. Our results demonstrate that Slr1768 has a leading role in acclimatisation, linking light damage with maintenance of the thylakoids

    ATAB2 is a novel factor in the signalling pathway of light-controlled synthesis of photosystem proteins

    No full text
    Plastid translational control depends to a large extent on the light conditions, and is presumably mediated by nucleus-encoded proteins acting on organelle gene expression. However, the molecular mechanisms of light signalling involved in translation are still poorly understood. We investigated the role of the Arabidopsis ortholog of Tab2, a nuclear gene specifically required for translation of the PsaB photosystem I subunit in the unicellular alga Chlamydomonas. Inactivation of ATAB2 strongly affects Arabidopsis development and thylakoid membrane biogenesis and leads to an albino phenotype. Moreover the rate of synthesis of the photosystem reaction center subunits is decreased and the association of their mRNAs with polysomes is affected. ATAB2 is a chloroplast A/U-rich RNA-binding protein that presumably functions as an activator of translation with at least two targets, one for each photosystem. During early seedling development, ATAB2 blue-light induction is lowered in photoreceptor mutants, notably in those lacking cryptochromes. Considering its role in protein synthesis and its photoreceptor-mediated expression, ATAB2 represents a novel factor in the signalling pathway of light-controlled translation of photosystem proteins during early plant development

    The Chloroplast Genome and Nucleo-Cytosolic Crosstalk

    No full text

    Chloroplast Gene Expression—RNA Synthesis and Processing

    No full text
    corecore