32 research outputs found

    Natural Selection Fails to Optimize Mutation Rates for Long-Term Adaptation on Rugged Fitness Landscapes

    Get PDF
    The rate of mutation is central to evolution. Mutations are required for adaptation, yet most mutations with phenotypic effects are deleterious. As a consequence, the mutation rate that maximizes adaptation will be some intermediate value. Here, we used digital organisms to investigate the ability of natural selection to adjust and optimize mutation rates. We assessed the optimal mutation rate by empirically determining what mutation rate produced the highest rate of adaptation. Then, we allowed mutation rates to evolve, and we evaluated the proximity to the optimum. Although we chose conditions favorable for mutation rate optimization, the evolved rates were invariably far below the optimum across a wide range of experimental parameter settings. We hypothesized that the reason that mutation rates evolved to be suboptimal was the ruggedness of fitness landscapes. To test this hypothesis, we created a simplified landscape without any fitness valleys and found that, in such conditions, populations evolved near-optimal mutation rates. In contrast, when fitness valleys were added to this simple landscape, the ability of evolving populations to find the optimal mutation rate was lost. We conclude that rugged fitness landscapes can prevent the evolution of mutation rates that are optimal for long-term adaptation. This finding has important implications for applied evolutionary research in both biological and computational realms

    A Comparison of the Effects of Random and Selective Mass Extinctions on Erosion of Evolutionary History in Communities of Digital Organisms

    Get PDF
    The effect of mass extinctions on phylogenetic diversity and branching history of clades remains poorly understood in paleobiology. We examined the phylogenies of communities of digital organisms undergoing open-ended evolution as we subjected them to instantaneous “pulse” extinctions, choosing survivors at random, and to prolonged “press” extinctions involving a period of low resource availability. We measured age of the phylogenetic root and tree stemminess, and evaluated how branching history of the phylogenetic trees was affected by the extinction treatments. We found that strong random (pulse) and strong selective extinction (press) both left clear long-term signatures in root age distribution and tree stemminess, and eroded deep branching history to a greater degree than did weak extinction and control treatments. The widely-used Pybus-Harvey gamma statistic showed a clear short-term response to extinction and recovery, but differences between treatments diminished over time and did not show a long-term signature. The characteristics of post-extinction phylogenies were often affected as much by the recovery interval as by the extinction episode itself

    The effects of low-impact mutations in digital organisms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Avida is a computer program that performs evolution experiments with digital organisms. Previous work has used the program to study the evolutionary origin of complex features, namely logic operations, but has consistently used extremely large mutational fitness effects. The present study uses Avida to better understand the role of low-impact mutations in evolution.</p> <p>Results</p> <p>When mutational fitness effects were approximately 0.075 or less, no new logic operations evolved, and those that had previously evolved were lost. When fitness effects were approximately 0.2, only half of the operations evolved, reflecting a threshold for selection breakdown. In contrast, when Avida's default fitness effects were used, all operations routinely evolved to high frequencies and fitness increased by an average of 20 million in only 10,000 generations.</p> <p>Conclusions</p> <p>Avidian organisms evolve new logic operations only when mutations producing them are assigned high-impact fitness effects. Furthermore, purifying selection cannot protect operations with low-impact benefits from mutational deterioration. These results suggest that selection breaks down for low-impact mutations below a certain fitness effect, the <it>selection threshold</it>. Experiments using biologically relevant parameter settings show the tendency for increasing genetic load to lead to loss of biological functionality. An understanding of such genetic deterioration is relevant to human disease, and may be applicable to the control of pathogens by use of lethal mutagenesis.</p
    corecore