853 research outputs found

    Spin-filter effect of the europium chalcogenides: An exactly solved many-body model

    Full text link
    A model Hamiltonian is introduced which considers the main features of the experimental spin filter situation as s-f interaction, planar geometry and the strong external electric field. The proposed many-body model can be solved analytically and exactly using Green functions. The spin polarization of the field-emitted electrons is expressed in terms of spin-flip probabilities, which on their part are put down to the exactly known dynamic quantities of the system. The calculated electron spin polarization shows remarkable dependencies on the electron velocity perpendicular to the emitting plane and the strength of s-f coupling. Experimentally observed polarization values of about 90% are well understood within the framework of the proposed model.Comment: accepted (Physical Review B); 10 pages, 11 figures; http://orion.physik.hu-berlin.de

    Ferromagnetic Kondo-Lattice Model

    Full text link
    We present a many-body approach to the electronic and magnetic properties of the (multiband) Kondo-lattice model with ferromagnetic interband exchange. The coupling between itinerant conduction electrons and localized magnetic moments leads, on the one hand, to a distinct temperature-dependence of the electronic quasiparticle spectrum and, on the other hand, to magnetic properties, as e.~g.the Curie temperature T_C or the magnon dispersion, which are strongly influenced by the band electron selfenergy and therewith in particular by the carrier density. We present results for the single-band Kondo-lattice model in terms of quasiparticle densities of states and quasiparticle band structures and demonstrate the density-dependence of the self-consistently derived Curie temperature. The transition from weak-coupling (RKKY) to strong-coupling (double exchange) behaviour is worked out. The multiband model is combined with a tight-binding-LMTO bandstructure calculation to describe real magnetic materials. As an example we present results for the archetypal ferromagnetic local-moment systems EuO and EuS. The proposed method avoids the double counting of relevant interactions and takes into account the correct symmetry of atomic orbitals.Comment: 15 pages, 10 figure

    Reflections on a Measurement of the Gravitational Constant Using a Beam Balance and 13 Tons of Mercury

    Full text link
    In 2006, a final result of a measurement of the gravitational constant GG performed by researchers at the University of Z\"urich was published. A value of G=6.674\,252(122)\times 10^{-11}\,\mbox{m}^3\,\mbox{kg}^{-1}\,\mbox{s}^{-2} was obtained after an experimental effort that lasted over one decade. Here, we briefly summarize the measurement and discuss the strengths and weaknesses of this approach.Comment: 13 pages, 5 figures accepted for publication in Phil. Trans. R. Soc.

    Quantum effects in the quasiparticle structure of the ferromagnetic Kondo lattice model

    Full text link
    A new ``Dynamical Mean-field theory'' based approach for the Kondo lattice model with quantum spins is introduced. The inspection of exactly solvable limiting cases and several known approximation methods, namely the second-order perturbation theory, the self-consistent CPA and finally a moment-conserving decoupling of the equations of motion help in evaluating the new approach. This comprehensive investigation gives some certainty to our results: Whereas our method is somewhat limited in the investigation of the J<0-model, the results for J>0 reveal important aspects of the physics of the model: The energetically lowest states are not completely spin-polarized.A band splitting, which occurs already for relatively low interaction strengths, can be related to distinct elementary excitations, namely magnon emission (absorption) and the formation of magnetic polarons. We demonstrate the properties of the ferromagnetic Kondo lattice model in terms of spectral densities and quasiparticle densities of states.Comment: 19 pages, 4 figure

    Influence of Spin Wave Excitations on the Ferromagnetic Phase Diagram in the Hubbard-Model

    Full text link
    The subject of the present paper is the theoretical description of collective electronic excitations, i.e. spin waves, in the Hubbard-model. Starting with the widely used Random-Phase-Approximation, which combines Hartree-Fock theory with the summation of the two-particle ladder, we extend the theory to a more sophisticated single particle approximation, namely the Spectral-Density-Ansatz. Doing so we have to introduce a `screened` Coulomb-interaction rather than the bare Hubbard-interaction in order to obtain physically reasonable spinwave dispersions. The discussion following the technical procedure shows that comparison of standard RPA with our new approximation reduces the occurrence of a ferromagnetic phase further with respect to the phase-diagrams delivered by the single particle theories.Comment: 8 pages, 9 figures, RevTex4, accepted for publication in Phys. Rev.

    Conservation of the spectral moments in the n-pole approximation

    Full text link
    A formulation of the Green's function method is presented in the n-pole approximation. Without referring to a specific model we give a general scheme of calculations that easily permits the computation of the "single-particle" Green's function in terms of the energy matrix. A theorem is proved which states that the moments of the spectral density function are conserved up to the order 2(n-l+1), where l is the order of the composite field. A comparison with the spectral density approach is also discussed.Comment: 12 pages, RevTe

    An analytical study of resonant transport of Bose-Einstein condensates

    Full text link
    We study the stationary nonlinear Schr\"odinger equation, or Gross-Pitaevskii equation, for a one--dimensional finite square well potential. By neglecting the mean--field interaction outside the potential well it is possible to discuss the transport properties of the system analytically in terms of ingoing and outgoing waves. Resonances and bound states are obtained analytically. The transmitted flux shows a bistable behaviour. Novel crossing scenarios of eigenstates similar to beak--to--beak structures are observed for a repulsive mean-field interaction. It is proven that resonances transform to bound states due to an attractive nonlinearity and vice versa for a repulsive nonlinearity, and the critical nonlinearity for the transformation is calculated analytically. The bound state wavefunctions of the system satisfy an oscillation theorem as in the case of linear quantum mechanics. Furthermore, the implications of the eigenstates on the dymamics of the system are discussed.Comment: RevTeX4, 16 pages, 19 figure

    Element-resolved x-ray ferrimagnetic and ferromagnetic resonance spectroscopy

    Get PDF
    We report on the measurement of element-specific magnetic resonance spectra at gigahertz frequencies using x-ray magnetic circular dichroism (XMCD). We investigate the ferrimagnetic precession of Gd and Fe ions in Gd-substituted Yttrium Iron Garnet, showing that the resonant field and linewidth of Gd precisely coincide with Fe up to the nonlinear regime of parametric excitations. The opposite sign of the Gd x-ray magnetic resonance signal with respect to Fe is consistent with dynamic antiferromagnetic alignment of the two ionic species. Further, we investigate a bilayer metal film, Ni80_{80}Fe20_{20}(5 nm)/Ni(50 nm), where the coupled resonance modes of Ni and Ni80_{80}Fe20_{20} are separately resolved, revealing shifts in the resonance fields of individual layers but no mutual driving effects. Energy-dependent dynamic XMCD measurements are introduced, combining x-ray absorption and magnetic resonance spectroscopies.Comment: 16 pages, 8 figure

    Bosonic sector of the two-dimensional Hubbard model studied within a two-pole approximation

    Full text link
    The charge and spin dynamics of the two-dimensional Hubbard model in the paramagnetic phase is first studied by means of the two-pole approximation within the framework of the Composite Operator Method. The fully self-consistent scheme requires: no decoupling, the fulfillment of both Pauli principle and hydrodynamics constraints, the simultaneous solution of fermionic and bosonic sectors and a very rich momentum dependence of the response functions. The temperature and momentum dependencies, as well as the dependency on the Coulomb repulsion strength and the filling, of the calculated charge and spin susceptibilities and correlation functions are in very good agreement with the numerical calculations present in the literature
    • …
    corecore