446 research outputs found
Shadow Energy Functionals and Potentials in Born-Oppenheimer Molecular Dynamics
In Born-Oppenheimer molecular dynamics (BOMD) simulations based on density
functional theory (DFT), the potential energy and the interatomic forces are
calculated from an electronic ground state density that is determined by an
iterative self-consistent field optimization procedure, which in practice never
is fully converged. The calculated energies and the forces are therefore only
approximate, which may lead to an unphysical energy drift and instabilities.
Here we discuss an alternative shadow BOMD approach that is based on a backward
error analysis. Instead of calculating approximate solutions for an underlying
exact regular BO potential, we do the opposite. Instead, we calculate the exact
electron density, energies, and forces, but for an underlying approximate
shadow BO potential. In this way the calculated forces are conservative with
respect to the shadow potential and generate accurate molecular trajectories
with long-term energy stability. We show how such shadow BO potentials can be
constructed at different levels of accuracy as a function of the integration
time step, dt, from the minimization of a sequence of systematically
improvable, but approximate, shadow energy density functionals. For each
functional there is a corresponding ground state BO potential. These pairs of
shadow energy functionals and potentials are higher-level generalizations of
the original "0th-level" shadow energy functionals and potentials used in
extended Lagrangian BOMD [Eur. Phys. J. B vol. 94, 164 (2021)]. The proposed
shadow energy functionals and potentials are useful only within this dynamical
framework, where also the electronic degrees of freedom are propagated together
with the atomic positions and velocities. The theory is general and can be
applied to MD simulations using approximate DFT, Hartree-Fock or semi-empirical
methods, as well as to coarse-grained flexible charge models.Comment: 16 pages, 3 figure
Matrix Diagonalization as a Board Game: Teaching an Eigensolver the Fastest Path to Solution
Matrix diagonalization is at the cornerstone of numerous fields of scientific
computing. Diagonalizing a matrix to solve an eigenvalue problem requires a
sequential path of iterations that eventually reaches a sufficiently converged
and accurate solution for all the eigenvalues and eigenvectors. This typically
translates into a high computational cost. Here we demonstrate how
reinforcement learning, using the AlphaZero framework, can accelerate Jacobi
matrix diagonalizations by viewing the selection of the fastest path to
solution as a board game. To demonstrate the viability of our approach we apply
the Jacobi diagonalization algorithm to symmetric Hamiltonian matrices that
appear in quantum chemistry calculations. We find that a significant
acceleration can often be achieved. Our findings highlight the opportunity to
use machine learning as a promising tool to improve the performance of
numerical linear algebra.Comment: 14 page
Pair distribution function in a two-dimensional electron gas
We calculate the pair distribution function, , in a two-dimensional
electron gas and derive a simple analytical expression for its value at the
origin as a function of . Our approach is based on solving the
Schr\"{o}dinger equation for the two-electron wave function in an appropriate
effective potential, leading to results that are in good agreement with Quantum
Monte Carlo data and with the most recent numerical calculations of . [C.
Bulutay and B. Tanatar, Phys. Rev. B {\bf 65}, 195116 (2002)] We also show that
the spin-up spin-down correlation function at the origin, , is mainly independent of the degree of spin polarization of
the electronic system.Comment: 5 figures, pair distribution dependence with distance is calculate
Diabetes in Danish Bank Voles (M. glareolus): Survivorship, Influence on Weight, and Evaluation of Polydipsia as a Screening Tool for Hyperglycaemia
BACKGROUND: Previous studies have concluded that the development of polydipsia (PD, a daily water intake ≥ 21 ml) among captive Danish bank voles, is associated with the development of a type 1 diabetes (T1D), based on findings of hyperglycaemia, glucosuria, ketonuria/-emia, lipemia, destroyed beta cells, and presence of autoantibodies against GAD65, IA-2, and insulin. AIM AND METHODS: We retrospectively analysed data from two separate colonies of Danish bank voles in order to 1) estimate survivorship after onset of PD, 2) evaluate whether the weight of PD voles differed from non-PD voles, and, 3), evaluate a state of PD as a practical and non-invasive tool to screen for voles with a high probability of hypeglycaemia. In addition, we discuss regional differences related to the development of diabetes in Scandinavian bank voles and the relevance of the Ljungan virus as proposed etiological agent. RESULTS: We found that median survival after onset of PD is at least 91 days (lower/upper quartiles = 57/134 days) with a maximum recording of at least 404 days survivorship. The development of PD did not influence the weight of Danish bank voles. The measures of accuracy when using PD as predictor of hyperglycaemia, i.e. sensitivity, specificity, positive predictive value, and negative predictive value, equalled 69%, 97%, 89%, and 89%, respectively. CONCLUSION: The relatively long survival of Danish PD bank voles suggests potentials for this model in future studies of the long-term complications of diabetes, of which some observations are mentioned. Data also indicates that diabetes in Danish bank is not associated with a higher body weight. Finally, the method of using measurements of daily water intake to screen for voles with a high probability of hyperglycaemia constitutes a considerable refinement when compared to the usual, invasive, methods
Optomagnetic composite medium with conducting nanoelements
A new type of metal-dielectric composites has been proposed that is
characterised by a resonance-like behaviour of the effective permeability in
the infrared and visible spectral ranges. This material can be referred to as
optomagnetic medium. The analytical formalism developed is based on solving the
scattering problem for considered inclusions with impedance boundary condition,
which yields the current and charge distributions within the inclusions. The
presence of the effective magnetic permeability and its resonant properties
lead to novel optical effects and open new possible applications.Comment: 48 pages, 13 figures. accepted to Phys. Rev. B; to appear vol. 66,
200
Association between proton pump inhibitor therapy and clostridium difficile infection: a contemporary systematic review and meta-analysis.
Abstract
Introduction
Emerging epidemiological evidence suggests that proton pump inhibitor (PPI) acid-suppression therapy is associated with an increased risk of Clostridium difficile infection (CDI).
Methods
Ovid MEDLINE, EMBASE, ISI Web of Science, and Scopus were searched from 1990 to January 2012 for analytical studies that reported an adjusted effect estimate of the association between PPI use and CDI. We performed random-effect meta-analyses. We used the GRADE framework to interpret the findings.
Results
We identified 47 eligible citations (37 case-control and 14 cohort studies) with corresponding 51 effect estimates. The pooled OR was 1.65, 95% CI (1.47, 1.85), I2 = 89.9%, with evidence of publication bias suggested by a contour funnel plot. A novel regression based method was used to adjust for publication bias and resulted in an adjusted pooled OR of 1.51 (95% CI, 1.26–1.83). In a speculative analysis that assumes that this association is based on causality, and based on published baseline CDI incidence, the risk of CDI would be very low in the general population taking PPIs with an estimated NNH of 3925 at 1 year.
Conclusions
In this rigorously conducted systemic review and meta-analysis, we found very low quality evidence (GRADE class) for an association between PPI use and CDI that does not support a cause-effect relationship
- …