1,110 research outputs found

    Infrared spectral absorption coefficient data for water

    Get PDF
    Infrared spectral absorption coefficient data for water vapor over temperature range 575 to 1250 degrees K and pressures to 1 atmospher

    Understanding digital events : process philosophy and causal autonomy

    Get PDF
    This paper argues that the ubiquitous digital networks in which we are increasingly becoming immersed present a threat to our ability to exercise free will. Using process philosophy, and expanding upon understandings of causal autonomy, the paper outlines a thematic analysis of diary studies and interviews gathered in a project exploring the nature of digital experience. It concludes that without mindfulness in both the use and design of digital devices and services we run the risk of allowing such services to direct our daily lives in ways over which we are increasingly losing control

    Magnetic inflation and stellar mass. III. revised parameters for the component stars of NSVS 07394765

    Full text link
    We perform a new analysis of the M-dwarf–M-dwarf eclipsing binary system NSVS 07394765 in order to investigate the reported hyper-inflated radius of one of the component stars. Our analysis is based on archival photometry from the Wide Angle Search for Planets, new photometry from the 32 cm Command Module Observatory telescope in Arizona and the 70 cm telescope at Thacher Observatory in California, and new high-resolution infrared spectra obtained with the Immersion Grating Infrared Spectrograph on the Discovery Channel Telescope. The masses and radii we measure for each component star disagree with previously reported measurements. We show that both stars are early M-type main-sequence stars without evidence for youth or hyper-inflation ( = - ☉ M M + 1 0.661 0.036 0.008 , = - ☉ M M + 2 0.608 0.028 0.003 , = - ☉ + R1 0.599 0.019 R 0.032 , = - ☉ + R2 0.625 0.027 R 0.012 ), and we update the orbital period and eclipse ephemerides for the system. We suggest that the likely cause of the initial hyper-inflated result is the use of moderate-resolution spectroscopy for precise radial velocity measurements.Published versio

    Properties of nonaqueous electrolytes Sixth summary report, 20 Sep. 1967 - 19 Mar. 1968

    Get PDF
    Physical properties and structural studies on propylene carbonate, dimethyl formamide, and acetonitrile solvent electrolyte

    On the Eigenvalue Density of Real and Complex Wishart Correlation Matrices

    Full text link
    Wishart correlation matrices are the standard model for the statistical analysis of time series. The ensemble averaged eigenvalue density is of considerable practical and theoretical interest. For complex time series and correlation matrices, the eigenvalue density is known exactly. In the real case, however, a fundamental mathematical obstacle made it forbidingly complicated to obtain exact results. We use the supersymmetry method to fully circumvent this problem. We present an exact formula for the eigenvalue density in the real case in terms of twofold integrals and finite sums.Comment: 4 pages, 2 figure

    Quantum Phase Transitions in Anti-ferromagnetic Planar Cubic Lattices

    Full text link
    Motivated by its relation to an NP\cal{NP}-hard problem, we analyze the ground state properties of anti-ferromagnetic Ising-spin networks embedded on planar cubic lattices, under the action of homogeneous transverse and longitudinal magnetic fields. This model exhibits a quantum phase transition at critical values of the magnetic field, which can be identified by the entanglement behavior, as well as by a Majorization analysis. The scaling of the entanglement in the critical region is in agreement with the area law, indicating that even simple systems can support large amounts of quantum correlations. We study the scaling behavior of low-lying energy gaps for a restricted set of geometries, and find that even in this simplified case, it is impossible to predict the asymptotic behavior, with the data allowing equally good fits to exponential and power law decays. We can therefore, draw no conclusion as to the algorithmic complexity of a quantum adiabatic ground-state search for the system.Comment: 7 pages, 13 figures, final version (accepted for publication in PRA

    A Gyrochronology and Microvariability Survey of the Milky Way's Older Stars Using Kepler's Two-Wheels Program

    Full text link
    Even with the diminished precision possible with only two reaction wheels, the Kepler spacecraft can obtain mmag level, time-resolved photometry of tens of thousands of sources. The presence of such a rich, large data set could be transformative for stellar astronomy. In this white paper, we discuss how rotation periods for a large ensemble of single and binary main- sequence dwarfs can yield a quantitative understanding of the evolution of stellar spin-down over time. This will allow us to calibrate rotation-based ages beyond ~1 Gyr, which is the oldest benchmark that exists today apart from the Sun. Measurement of rotation periods of M dwarfs past the fully-convective boundary will enable extension of gyrochronology to the end of the stellar main-sequence, yielding precise ages ({\sigma} ~10%) for the vast majority of nearby stars. It will also help set constraints on the angular momentum evolution and magnetic field generation in these stars. Our Kepler-based study would be supported by a suite of ongoing and future ground-based observations. Finally, we briefly discuss two ancillary science cases, detection of long-period low-mass eclipsing binaries and microvariability in white dwarfs and hot subdwarf B stars that the Kepler Two-Wheels Program would facilitate.Comment: Kepler white pape

    Physical interpretation of the Wigner rotations and its implications for relativistic quantum information

    Full text link
    We present a new treatment for the spin of a massive relativistic particle in the context of quantum information based on a physical interpretation of the Wigner rotations, obtaining different results in relation to the previous works. We are lead to the conclusions that it is not possible to define a reduced density matrix for the particle spin and that the Pauli-Lubanski (or similar) spin operators are not suitable to describe measurements where spin couples to an electromagnetic field in the measuring apparatus. These conclusions contradict the assumptions made by most of the previous papers on the subject. We also propose an experimental test of our formulation.Comment: 10 pages, 2 figures. Several changes were made on the text. One extra example was include

    The Role of Organic Carbon in the Southern Uplands-Down-Longford Terrane Accretionary Prism, Scotland and Ireland

    Get PDF
    Fluid inclusions were measured by M. Baron. Electron Microscopy was performed with the help of J. Still in the ACEMAC Facility at the University of Aberdeen. Skilled technical support was also provided by J. Johnston & C. Taylor. P. Carey and A. Lings assisted field sampling. The manuscript benefitted from careful reviews by I. Scotchman and W. Meredith. The research was partly supported by NERC grant NE/T003677/1.Peer reviewedPublisher PD
    corecore