22 research outputs found

    Comparing data of different survey methods for sustainable wildlife management in hunting areas: the case of Tarangire-Manyara ecosystem, northern Tanzania

    No full text
    Cost-benefit considerations of wildlife monitoring are essential, particularly, in areas outside national park boundaries, where resources for conducting wildlife censuses are scarce, but that, at the same time, are subject to high pressure for wildlife utilization, such as hunting. Large mammal survey data from various sources were collated and analyzed to investigate which methods are best suited for monitoring purposes at low cost in the Tarangire-Manyara ecosystem, northern Tanzania. Our results indicate that primary data (from aerial and road transects counts) that involve direct species observations, although sometimes very expensive, are required for establishing the status of the target species in terms of density or population size. Concomitantly, secondary data from various sources, such as interviews, hunting quota, and damage reports, obtained over wide areas and over longer periods of time, can provide important information on presence/absence and distribution of species within an area. In addition, the study revealed that hunting quotas set did not correlate with species abundance/numbers from the primary data surveys for most of the large mammals hunted within the ecosystem. For a better conservation and management of wildlife, in particular with respect to the forthcoming formation of Wildlife Management Areas, we propose an integrated approach to wildlife monitoring using primary and secondary data sources through the involvement of local people's knowledge

    Occurrence and characterization of Shiga toxin-producing Escherichia coli o157:h7 and other non-sorbitol–fermenting e. coli in cattle and humans in urban areas of Morogoro, Tanzania

    No full text
    Vector-borne and zoonotic diseases, 2014; 14 (7)Escherichia coli strains such as Shiga toxin–producing E. coli (STEC), enteropathogenic E. coli, enterotoxigenic, attaching, and effacing E. coli, and enteroinvasive E. coli cause diarrhea in humans. Although other serotypes exist, the most commonly reported STEC in outbreaks is O157:H7. A cross-sectional study was conducted to isolate and characterize non-sorbitol–fermenting (NSF) E. coli O157:H7 from urban and periurban livestock settings of Morogoro, Tanzania. Human stool, cattle feces, and soil and water samples were collected. Observations and questionnaire interview studies were used to gather information about cattle and manure management practices in the study area. E. coli were isolated on sorbitol MacConkey agar and characterized by conventional biochemical tests. Out of 1049 samples, 143 (13.7%) yielded NSF E. coli. Serological and antimicrobial tests and molecular typing were performed to NSF E. coli isolates. These procedures detected 10 (7%) pathogenic E. coli including STEC (n=7), enteropathogenic E. coli (EPEC) (n=2), and attaching and effacing E. coli (A/EEC) (n=1) strains. The STEC strains had the ability to produce VT1 and different VT2 toxin subtypes that caused cytopathic effects on Vero cells. The prevalence of STEC in cattle was 1.6%, out of which 0.9% was serotype O157:H7 and the overall prevalence of diarrheagenic E. coli in cattle was 2.2%. The serotypes O157:H7, O142:H34, O113:H21, O+:H-,O +:H16, and O25:H4 were identified. One ESBLproducing isolate showed the MLST type ST131. To our knowledge, this is the first finding in Tanzania of this recently emerged worldwide pandemic clonal group, causing widespread antimicrobial-resistant infections, and adds knowledge of the geographical distribution of ST131. Cattle manure was indiscriminately deposited within residential areas, and there was direct contact between humans and cattle feces during manure handling. Cattle and manure management practices expose humans, animals, and the environment to pathogenic E. coli and other manure-borne pathogens. Therefore, there is a need to improve manure management practices in urban and periurban areas to prevent pathogen spread and associated human health risks

    Occurrence and characterization of Shiga toxin-producing Escherichia coli o157:h7 and other non-sorbitol–fermenting e. coli in cattle and humans in urban areas of Morogoro, Tanzania

    No full text
    Vector-borne and zoonotic diseases, 2014; 14 (7)Escherichia coli strains such as Shiga toxin–producing E. coli (STEC), enteropathogenic E. coli, enterotoxigenic, attaching, and effacing E. coli, and enteroinvasive E. coli cause diarrhea in humans. Although other serotypes exist, the most commonly reported STEC in outbreaks is O157:H7. A cross-sectional study was conducted to isolate and characterize non-sorbitol–fermenting (NSF) E. coli O157:H7 from urban and periurban livestock settings of Morogoro, Tanzania. Human stool, cattle feces, and soil and water samples were collected. Observations and questionnaire interview studies were used to gather information about cattle and manure management practices in the study area. E. coli were isolated on sorbitol MacConkey agar and characterized by conventional biochemical tests. Out of 1049 samples, 143 (13.7%) yielded NSF E. coli. Serological and antimicrobial tests and molecular typing were performed to NSF E. coli isolates. These procedures detected 10 (7%) pathogenic E. coli including STEC (n=7), enteropathogenic E. coli (EPEC) (n=2), and attaching and effacing E. coli (A/EEC) (n=1) strains. The STEC strains had the ability to produce VT1 and different VT2 toxin subtypes that caused cytopathic effects on Vero cells. The prevalence of STEC in cattle was 1.6%, out of which 0.9% was serotype O157:H7 and the overall prevalence of diarrheagenic E. coli in cattle was 2.2%. The serotypes O157:H7, O142:H34, O113:H21, O+:H-,O +:H16, and O25:H4 were identified. One ESBLproducing isolate showed the MLST type ST131. To our knowledge, this is the first finding in Tanzania of this recently emerged worldwide pandemic clonal group, causing widespread antimicrobial-resistant infections, and adds knowledge of the geographical distribution of ST131. Cattle manure was indiscriminately deposited within residential areas, and there was direct contact between humans and cattle feces during manure handling. Cattle and manure management practices expose humans, animals, and the environment to pathogenic E. coli and other manure-borne pathogens. Therefore, there is a need to improve manure management practices in urban and periurban areas to prevent pathogen spread and associated human health risks

    Additional file 1 of Participatory development of practical, affordable, insecticide-treated mosquito proofing for a range of housing designs in rural southern Tanzania

    No full text
    Additional file 1. An Excel® spreadsheet file containing all three data tables that were collected and analysed in this study, anonymized by removing all variables containing information that could be used to identify individuals, households or their houses
    corecore