1,689 research outputs found

    Pacific Islands Groundwater: Learning the Game

    Get PDF

    Evolution of Mass Functions of Coeval Stars through Wind Mass Loss and Binary Interactions

    Get PDF
    Accurate determinations of stellar mass functions and ages of stellar populations are crucial to much of astrophysics. We analyse the evolution of stellar mass functions of coeval main sequence stars including all relevant aspects of single- and binary-star evolution. We show that the slope of the upper part of the mass function in a stellar cluster can be quite different to the slope of the initial mass function. Wind mass loss from massive stars leads to an accumulation of stars which is visible as a peak at the high mass end of mass functions, thereby flattening the mass function slope. Mass accretion and mergers in close binary systems create a tail of rejuvenated binary products. These blue straggler stars extend the single star mass function by up to a factor of two in mass and can appear up to ten times younger than their parent stellar cluster. Cluster ages derived from their most massive stars that are close to the turn-off may thus be significantly biased. To overcome such difficulties, we propose the use of the binary tail of stellar mass functions as an unambiguous clock to derive the cluster age because the location of the onset of the binary tail identifies the cluster turn-off mass. It is indicated by a pronounced jump in the mass function of old stellar populations and by the wind mass loss peak in young stellar populations. We further characterise the binary induced blue straggler population in star clusters in terms of their frequency, binary fraction and apparent age.Comment: 21 pages, 22 figures, accepted for publication in Ap

    Forming short-period Wolf-Rayet X-ray binaries and double black holes through stable mass transfer

    Get PDF
    We show that black-hole High-Mass X-ray Binaries (HMXBs) with O- or B-type donor stars and relatively short orbital periods, of order one week to several months may survive spiral in, to then form Wolf-Rayet (WR) X-ray binaries with orbital periods of order a day to a few days; while in systems where the compact star is a neutron star, HMXBs with these orbital periods never survive spiral-in. We therefore predict that WR X-ray binaries can only harbor black holes. The reason why black-hole HMXBs with these orbital periods may survive spiral in is: the combination of a radiative envelope of the donor star, and a high mass of the compact star. In this case, when the donor begins to overflow its Roche lobe, the systems are able to spiral in slowly with stable Roche-lobe overflow, as is shown by the system SS433. In this case the transferred mass is ejected from the vicinity of the compact star (so-called "isotropic re-emission" mass loss mode, or "SS433-like mass loss"), leading to gradual spiral-in. If the mass ratio of donor and black hole is >3.5>3.5, these systems will go into CE evolution and are less likely to survive. If they survive, they produce WR X-ray binaries with orbital periods of a few hours to one day. Several of the well-known WR+O binaries in our Galaxy and the Magellanic Clouds, with orbital periods in the range between a week and several months, are expected to evolve into close WR-Black-Hole binaries,which may later produce close double black holes. The galactic formation rate of double black holes resulting from such systems is still uncertain, as it depends on several poorly known factors in this evolutionary picture. It might possibly be as high as 105\sim 10^{-5} per year.Comment: MNRAS in pres

    Pedestal and Er profile evolution during an edge localized mode cycle at ASDEX Upgrade

    Get PDF
    The upgrade of the edge charge exchange recombination spectroscopy diagnostic at ASDEX Upgrade has enabled highly spatially resolved me asurements of the impurity ion dynamics during an edge-localized mode cycle ( ELM ) with unprecedented temp oral resolution, i.e. 65 μ s. The increase of transport during an ELM induces a relaxation of the ion, electron edge gradients in impurity density and fl ows. Detailed characterization of the recovery of the edge temperature gradients reveals a difference in the ion and electron channe l: the maximum ion temperature gradient T i is re-established on similar timescales as n e , which is faster than the recovery of T e .Afterthe clamping of the maximum gradient, T i and T e at the pedestal top continue to rise up to the next ELM while n e stays constant which means that the temperatur e pedestal and the resu lting pedestal pressure widen until the next ELM. The edge radial electric fi eld E r at the ELM crash is found to reduce to typical L-mode values and its ma ximum recovers to its pre-ELM conditions on a similar time scale as for n e and T i . Within the uncertainties, the measurements of E r align with their neoclassical predictions E r,neo for most of the ELM cycle, thus indicating that E r is dominated by collisional processes. However, between 2 and 4 ms af ter the ELM crash, other contributions to E B ́ fl ow, e.g. zonal fl ows or ion orbit effects, could not be excluded within the uncertainties.European Commission (EUROfusion 633053

    State of the Groundwater Resources of Southern Oahu

    Get PDF
    This report was written by John F. Mink.--P. v.Bibliography: p. 83

    Diverging volumetric trajectories following pediatric traumatic brain injury.

    Get PDF
    Traumatic brain injury (TBI) is a significant public health concern, and can be especially disruptive in children, derailing on-going neuronal maturation in periods critical for cognitive development. There is considerable heterogeneity in post-injury outcomes, only partially explained by injury severity. Understanding the time course of recovery, and what factors may delay or promote recovery, will aid clinicians in decision-making and provide avenues for future mechanism-based therapeutics. We examined regional changes in brain volume in a pediatric/adolescent moderate-severe TBI (msTBI) cohort, assessed at two time points. Children were first assessed 2-5 months post-injury, and again 12 months later. We used tensor-based morphometry (TBM) to localize longitudinal volume expansion and reduction. We studied 21 msTBI patients (5 F, 8-18 years old) and 26 well-matched healthy control children, also assessed twice over the same interval. In a prior paper, we identified a subgroup of msTBI patients, based on interhemispheric transfer time (IHTT), with significant structural disruption of the white matter (WM) at 2-5 months post injury. We investigated how this subgroup (TBI-slow, N = 11) differed in longitudinal regional volume changes from msTBI patients (TBI-normal, N = 10) with normal WM structure and function. The TBI-slow group had longitudinal decreases in brain volume in several WM clusters, including the corpus callosum and hypothalamus, while the TBI-normal group showed increased volume in WM areas. Our results show prolonged atrophy of the WM over the first 18 months post-injury in the TBI-slow group. The TBI-normal group shows a different pattern that could indicate a return to a healthy trajectory

    Stellar triples with chemically homogeneously evolving inner binaries

    Get PDF
    Observations suggest that massive stellar triples are common. However, their evolution is not yet fully understood. We investigate the evolution of hierarchical triples in which the stars of the inner binary experience chemically homogeneous evolution (CHE), particularly to understand the role of the tertiary star in the formation of gravitational-wave (GW) sources. We use the triple-star rapid population synthesis code tres to determine the evolution of these systems at two representative metallicities: Z = 0.005 and Z = 0.0005. About half of all triples harbouring a CHE inner binary (CHE triples) experience tertiary mass transfer (TMT) episodes, an event which is rare for classically evolving stars. In the majority of TMT episodes, the inner binary consists of two main-sequence stars (58--60 per cent) or two black holes (BHs, 24-31 per cent). Additionally, we explore the role of von Zeipel-Lidov-Kozai (ZLK) oscillations for CHE triples. ZLK oscillations can result in eccentric stellar mergers or lead to the formation of eccentric compact binaries in systems with initial outer pericentre smaller than ∼ 1200 R⊙. Approximately 24-30 per cent of CHE triples form GW sources, and in 31 per cent of these, the tertiary star plays a significant role and leads to configurations that are not predicted for isolated binaries. We conclude that the evolution of CHE binaries can be affected by a close tertiary companion, resulting in astronomical transients such as BH--BH binaries that merge via GW emission orders of magnitude faster than their isolated binary counterparts and tertiary-driven massive stellar mergers
    corecore