60 research outputs found

    Amyloid Precursor-Like Protein 2 deletion-induced retinal synaptopathy related to congenital stationary night blindness: structural, functional and molecular characteristics.

    Get PDF
    Amyloid precursor protein knockout mice (APP-KO) have impaired differentiation of amacrine and horizontal cells. APP is part of a gene family and its paralogue amyloid precursor-like protein 2 (APLP2) has both shared as well as distinct expression patterns to APP, including in the retina. Given the impact of APP in the retina we investigated how APLP2 expression affected the retina using APLP2 knockout mice (APLP2-KO). Using histology, morphometric analysis with noninvasive imaging technique and electron microscopy, we showed that APLP2-KO retina displayed abnormal formation of the outer synaptic layer, accompanied with greatly impaired photoreceptor ribbon synapses in adults. Moreover, APLP2-KO displayed a significant decease in ON-bipolar, rod bipolar and type 2 OFF-cone bipolar cells (36, 21 and 63 %, respectively). Reduction of the number of bipolar cells was accompanied with disrupted dendrites, reduced expression of metabotropic glutamate receptor 6 at the dendritic tips and alteration of axon terminals in the OFF laminae of the inner plexiform layer. In contrast, the APP-KO photoreceptor ribbon synapses and bipolar cells were intact. The APLP2-KO retina displayed numerous phenotypic similarities with the congenital stationary night blindness, a non-progressive retinal degeneration disease characterized by the loss of night vision. The pathological phenotypes in the APLP2-KO mouse correlated to altered transcription of genes involved in pre- and postsynatic structure/function, including CACNA1F, GRM6, TRMP1 and Gα0, and a normal scotopic a-wave electroretinogram amplitude, markedly reduced scotopic electroretinogram b-wave and modestly reduced photopic cone response. This confirmed the impaired function of the photoreceptor ribbon synapses and retinal bipolar cells, as is also observed in congenital stationary night blindness. Since congenital stationary night blindness present at birth, we extended our analysis to retinal differentiation and showed impaired differentiation of different bipolar cell subtypes and an altered temporal sequence of development from OFF to ON laminae in the inner plexiform layer. This was associated with the altered expression patterns of bipolar cell generation and differentiation factors, including MATH3, CHX10, VSX1 and OTX2. These findings demonstrate that APLP2 couples retina development and synaptic genes and present the first evidence that APLP2 expression may be linked to synaptic disease

    Bacterial Deposition of Gold on Hair: Archeological, Forensic and Toxicological Implications

    Get PDF
    Trace metal analyses in hair are used in archeological, forensic and toxicological investigations as proxies for metabolic processes. We show metallophilic bacteria mediating the deposition of gold (Au), used as tracer for microbial activity in hair post mortem after burial, affecting results of such analyses. Methodology/Principal Findings Human hair was incubated for up to six months in auriferous soils, in natural soil columns (Experiment 1), soils amended with mobile Au(III)-complexes (Experiment 2) and the Au-precipitating bacterium Cupriavidus metallidurans (Experiment 3), in peptone-meat-extract (PME) medium in a culture of C. metallidurans amended with Au(III)-complexes (Experiment 4), and in non-auriferous soil (Experiment 5). Hair samples were analyzed using scanning electron microscopy, confocal microscopy and inductively coupled plasma-mass spectrometry. In Experiments 1–4 the Au content increased with time (P = 0.038). The largest increase was observed in Experiment 4 vs. Experiment 1 (mean = 1188 vs. 161 µg Kg−1, Fisher's least significance 0.001). The sulfur content, a proxy for hair metabolism, remained unchanged. Notably, the ratios of Au-to-S increased with time (linear trend P = 0.02) and with added Au and bacteria (linear trend, P = 0.005), demonstrating that larger populations of Au-precipitating bacteria and increased availability of Au increased the deposition of Au on the hair. Conclusion/Significance Interactions of soil biota with hair post mortem may distort results of hair analyses, implying that metal content, microbial activities and the duration of burial must be considered in the interpretation of results of archeological, forensic and toxicological hair analyses, which have hitherto been proxies for pre-mortem metabolic processesGenevieve Phillips, Frank Reith, Clifford Qualls, Abdul-Mehdi Ali, Mike Spilde and Otto Appenzelle

    Oil-spill health risks under scrutiny

    No full text

    VP22 light controlled delivery of oligonucleotides to ocular cells in vitro and in vivo.

    No full text
    PURPOSE: To study VP22 light controlled delivery of antisense oligonucleotide (ODN) to ocular cells in vitro and in vivo. METHODS: The C-terminal half of VP22 was expressed in Escherichia coli, purified and mixed with 20 mer phosphorothioate oligonucleotides (ODNs) to form light sensitive complex particles (vectosomes). Uptake of vectosomes and light induced redistribution of ODNs in human choroid melanoma cells (OCM-1) and in human retinal pigment epithelial cells (ARPE-19) were studied by confocal and electron microscopy. The effect of vectosomes formed with an antisense ODN corresponding to the 3'-untranslated region of the human c-raf kinase gene on the viability and the proliferation of OCM-1 cells was assessed before and after illumination. Cells incubated with vectosomes formed with a mismatched ODN, a free antisense ODN or a free mismatched ODN served as controls. White light transscleral illumination was carried out 24 h after the intravitreal injection of vectosomes in rat eyes. The distribution of fluorescent vectosomes and free fluorescent ODN was evaluated on cryosections by fluorescence microscopy before, and 1 h after illumination. RESULTS: Overnight incubation of human OCM-1 and ARPE-19 cells with vectosomes lead to intracellular internalization of the vectosomes. When not illuminated, internalized vectosomes remained stable within the cell cytoplasm. Disruption of vectosomes and release of the complexed ODN was induced by illumination of the cultures with a cold white light or a laser beam. In vitro, up to 60% inhibition of OCM-1 cell proliferation was observed in illuminated cultures incubated with vectosomes formed with antisense c-raf ODN. No inhibitory effect on the OCM-1 cell proliferation was observed in the absence of illumination or when the cells are incubated with a free antisense c-raf ODN and illuminated. In vivo, 24 h after intravitreal injection, vectosomes were observed within the various retinal layers accumulating in the cytoplasm of RPE cells. Transscleral illumination of the injected eyes with a cold white light induced disruption of the vectosomes and a preferential localization of the "released" ODNs within the cell nuclei of the ganglion cell layer, the inner nuclear layer and the RPE cells. CONCLUSIONS: In vitro, VP22 light controlled delivery of ODNs to ocular cells nuclei was feasible using white light or laser illumination. In vivo, a single intravitreal injection of vectosomes, followed by transscleral illumination allowed for the delivery of free ODNs to retinal and RPE cells

    Placental growth factor-1 and epithelial haemato-retinal barrier breakdown: potential implication in the pathogenesis of diabetic retinopathy.

    No full text
    AIMS/HYPOTHESIS: Disruption of the retinal pigment epithelial (RPE) barrier contributes to sub-retinal fluid and retinal oedema as observed in diabetic retinopathy. High placental growth factor (PLGF) vitreous levels have been found in diabetic patients. This work aimed to elucidate the influence of PLGF-1 on a human RPE cell line (ARPE-19) barrier in vitro and on normal rat eyes in vivo. METHODS: ARPE-19 permeability was measured using transepithelial resistance and inulin flux under stimulation of PLGF-1, vascular endothelial growth factor (VEGF)-E and VEGF 165. Using RT-PCR, we evaluated the effect of hypoxic conditions or insulin on transepithelial resistance and on PLGF-1 and VEGF receptors. The involvement of mitogen-activated protein kinase (MEK, also known as MAPK)/extracellular signal-regulated kinase (ERK, also known as EPHB2) signalling pathways under PLGF-1 stimulation was evaluated by western blot analysis and specific inhibitors. The effect of PLGF-1 on the external haemato-retinal barrier was evaluated after intravitreous injection of PLGF-1 in the rat eye; evaluation was by semi-thin analysis and zonula occludens-1 immunolocalisation on flat-mounted RPE. RESULTS: In vitro, PLGF-1 induced a reversible decrease of transepithelial resistance and enhanced tritiated inulin flux. These effects were specifically abolished by an antisense oligonucleotide directed at VEGF receptor 1. Exposure of ARPE-19 cells to hypoxic conditions or to insulin induced an upregulation of PLGF-1 expression along with increased transcellular permeability. The PLGF-1-induced RPE cell permeability involved the MEK signalling pathway. Injection of PLGF-1 in the rat eye vitreous induced an opening of the RPE tight junctions with subsequent sub-retinal fluid accumulation, retinal oedema and cytoplasm translocation of junction proteins. CONCLUSIONS/INTERPRETATION: Our results indicate that PLGF-1 may be a potential regulation target for the control of diabetic retinal and macular oedema

    Mechanisms of FH Protection Against Neovascular AMD.

    Get PDF
    A common allele (402H) of the complement factor H (FH) gene is the major risk factor for age-related macular degeneration (AMD), the leading cause of blindness in the elderly population. Development and progression of AMD involves vascular and inflammatory components partly by deregulation of the alternative pathway of the complement system (AP). The loss of central vision results from atrophy and/or from abnormal neovascularization arising from the choroid. The functional link between FH, the main inhibitor of AP, and choroidal neovascularization (CNV) in AMD remains unclear. In a murine model of CNV used as a model for neovascular AMD (nAMD), intraocular human recombinant FH (recFH) reduced CNV as efficiently as currently used anti-VEGF (vascular endothelial growth factor) antibody, decreasing deposition of C3 cleavage fragments, membrane attack complex (MAC), and microglia/macrophage recruitment markers in the CNV lesion site. In sharp contrast, recFH carrying the H402 risk variant had no effect on CNV indicating a causal link to disease etiology. Only the recFH NT <sup>al</sup> region (recFH1-7), containing the CCPs1-4 C3-convertase inhibition domains and the CCP7 binding domain, exerted all differential biological effects. The CT <sup>al</sup> region (recFH7-20) containing the CCP7 and CCPs19-20 binding domains was antiangiogenic but did not reduce the microglia/macrophage recruitment. The antiangiogenic effect of both recFH1-20 and recFH-CCP7-20 resulted from thrombospondin-1 (TSP-1) upregulation independently of the C3 cleavage fragments generation. This study provides insight on the mechanistic role of FH in nAMD and invites to reconsider its therapeutic potential

    CCR2/CCL2-mediated inflammation protects photoreceptor cells from amyloid-β-induced apoptosis.

    No full text
    Age-related macular degeneration is characterized by the formation of drusen containing amyloid-β (Aβ) and the degeneration of photoreceptors. To explore the largely unknown role of Aβ in the retina, we investigated the effects on photoreceptors of the oligomeric form of Aβ(1-42). Subretinal injection of the Aβ peptide induced misplaced expression of recoverin and synaptophysin in the photoreceptors, oxidative stress in their inner and outer segments, and finally apoptosis. Aβ did not induce cell death in purified photoreceptor cell cultures, but did so in retinal cell cultures, thereby suggesting that the cellular environment plays a role in Aβ-induced photoreceptor apoptosis. Subretinal injection of Aβ was followed by activation and migration of microglial cells and then by photoreceptor apoptosis. Microglial cells phagocytosed rhodopsin-containing debris and Aβ in the subretinal space. Quantitative RT-PCR allowed us to identify a specific gene expression profile associated with the Aβ-induced progression of retinal degeneration and consistent with oxidative stress, inflammation, and an apoptotic program. The gene most highly upregulated in Aβ-injected retinas was that for the chemokine CCL2, and its absence or that of its cognate receptor CCR2 greatly reduced migration of activated microglial cells to the site of retinal injury and profoundly worsened photoreceptor degeneration and disorganization of the retinal pigment epithelium in Aβ-injected retinas. Our study pinpoints the roles of Aβ and of CCL2/CCR2 axis-dependent inflammation in photoreceptor apoptosis

    Caractérisations des propriétés viscoélastiques d'échantillons de cristallins porcins in vitro par élastographie ultrasonore

    No full text
    International audienceWith aging, the stiffening of the crystalline lens [K. R. Heys et al., Mol. Vision 10, 956 (2004); R. F. Fisher, J. Physiol. 212(1), 147–180 (1971)] can hinder accommodation and reduce near-vision in more than 75% of individuals above 40 year old [T. R. Fricke et al., Ophthalmology 125(10), 1492–1499 (2018)], an impairment known as presbyopia. Mapping lens elasticity using shear wave elastography holds significant promise for monitoring potential treatments for presbyopia. However, because of the transparency of the lens to ultrasound, the tracking of waves can be performed only on its boundaries. The goal of this study is to characterize the viscoelastic properties of in vitro crystalline lens samples with a curvilinear harmonic method based on noise correlation algorithms. This procedure consists of precise measurements of the dispersion of surface waves across a large frequency range (0.1–3.5 kHz), thus allowing for clear identification of the wave properties needed to correctly estimate the elasticity. The proposed method was applied to gelatin phantoms and excised porcine lens samples. This enabled the observation of two regions in the dispersion curves: a sharp decrease in dispersion at low frequencies (<1 kHz), which was partly due to guided waves, and a smoother slope at high frequencies (>1 kHz), which was attributed to viscoelastic dispersion. In contrast to previous studies, shear elasticity and viscosity moduli were computed at higher frequencies with a Kelvin–Voigt model. If our approach confirms the shear viscosity of lenses, then the shear elastic moduli of lenses are almost an order of magnitude greater than the results of previous studies
    corecore