974 research outputs found

    An asymptotic relationship between coupling methods for stochastically modeled population processes

    Full text link
    This paper is concerned with elucidating a relationship between two common coupling methods for the continuous time Markov chain models utilized in the cell biology literature. The couplings considered here are primarily used in a computational framework by providing reductions in variance for different Monte Carlo estimators, thereby allowing for significantly more accurate results for a fixed amount of computational time. Common applications of the couplings include the estimation of parametric sensitivities via finite difference methods and the estimation of expectations via multi-level Monte Carlo algorithms. While a number of coupling strategies have been proposed for the models considered here, and a number of articles have experimentally compared the different strategies, to date there has been no mathematical analysis describing the connections between them. Such analyses are critical in order to determine the best use for each. In the current paper, we show a connection between the common reaction path (CRP) method and the split coupling (SC) method, which is termed coupled finite differences (CFD) in the parametric sensitivities literature. In particular, we show that the two couplings are both limits of a third coupling strategy we call the "local-CRP" coupling, with the split coupling method arising as a key parameter goes to infinity, and the common reaction path coupling arising as the same parameter goes to zero. The analysis helps explain why the split coupling method often provides a lower variance than does the common reaction path method, a fact previously shown experimentally.Comment: Edited Section 4.

    Spectral Properties near the Mott Transition in the One-Dimensional Hubbard Model

    Full text link
    Single-particle spectral properties near the Mott transition in the one-dimensional Hubbard model are investigated by using the dynamical density-matrix renormalization group method and the Bethe ansatz. The pseudogap, hole-pocket behavior, spectral-weight transfer, and upper Hubbard band are explained in terms of spinons, holons, antiholons, and doublons. The Mott transition is characterized by the emergence of a gapless mode whose dispersion relation extends up to the order of hopping t (spin exchange J) in the weak (strong) interaction regime caused by infinitesimal doping.Comment: 4 pages, 2 figure

    Composition and structure of Pd nanoclusters in SiOx_x thin film

    Full text link
    The nucleation, distribution, composition and structure of Pd nanocrystals in SiO2_2 multilayers containing Ge, Si, and Pd are studied using High Resolution Transmission Electron Microscopy (HRTEM) and X-ray Photoelectron Spectroscopy (XPS), before and after heat treatment. The Pd nanocrystals in the as deposited sample seem to be capped by a layer of PdOx_x. A 1-2 eV shift in binding energy was found for the Pd-3d XPS peak, due to initial state Pd to O charge transfer in this layer. The heat treatment results in a decomposition of PdO and Pd into pure Pd nanocrystals and SiO2_2

    Double-Exchange Model on Triangle Chain

    Full text link
    We study ground state properties of the double-exchange model on triangle chain in the classical limit on t2gt_{2g} spins. The ground state is determined by a competition among the kinetic energy of the ege_g electron, the antiferromagnetic exchange energy between the t2gt_{2g} spins, and frustration due to a geometric structure of the lattice. The phase diagrams are obtained numerically for two kinds of the models which differ only in the transfer integral being real or complex. The properties of the states are understood from the viewpoint of the spin-induced Peierls instability. The results suggest the existence of a chiral glass phase which is characterized by a local spin chirality and a continuous degeneracy.Comment: 6 pages, 4 figure

    Star-shaped Local Density of States around Vortices in a Type II Superconductor

    Full text link
    The electronic structure of vortices in a type II superconductor is analyzed within the quasi-classical Eilenberger framework. The possible origin of a sixfold ``star'' shape of the local density of states, observed by scanning tunneling microscope experiments on NbSe2_2, is examined in the light of the three effects; the anisotropic pairing, the vortex lattice, and the anisotropic density of states at the Fermi surface. Outstanding features of split parallel rays of this star are well explained in terms of an anisotropic ss-wave pairing. This reveals a rich internal electronic structure associated with a vortex core.Comment: 4 pages, REVTeX, 3 figures available upon reques
    • …
    corecore