85 research outputs found
A fixed-dose 24-hour regimen of artesunate plus sulfamethoxypyrazine-pyrimethamine for the treatment of uncomplicated Plasmodium falciparum malaria in eastern Sudan
BACKGROUND: Artemisinin-based combination therapy is increasingly being adopted as first-line antimalarial therapy. The choice of appropriate therapy depends on efficacy, cost, side effects, and simplicity of administration. METHODS: the efficacy of fixed co-formulated (f) artesunate-sulfamethoxypyrazine-pyrimethamine (AS+SMP f) administered at time intervals of 12 hours for a 24-hour therapy was compared with the efficacy of the same drug given as a loose combination (AS+SMP l) with a dose interval of 24 hours for 3 days for the treatment of uncomplicated Plasmodium falciparum malaria in eastern Sudan. RESULTS: seventy-three patients (39 and 34 in the fixed and the loose regimen of AS+SMP respectively) completed the 28-days of follow-up. On day 3; all patients in both groups were a parasitaemic but one patient in the fixed group of AS+SMP f was still febrile. Polymerase chain reaction genotyping adjusted cure rates on day 28 were 92.3% and 97.1% (P > 0.05) for the fixed and loose combination of AS+SMP respectively. Three (4.1%) patients (one in the fixed and two patients in the loose group of AS+SMP) in the study suffered drug-related adverse effects. Gametocytaemia was not detected during follow-up in any of the patients. CONCLUSION: both regimens of AS+SMP were effective and safe for the treatment of uncomplicated P. falciparum malaria in eastern Sudan. Due to its simplicity, the fixed dose one-day treatment regimen may improve compliance and therefore may be the preferred choice
2018 Ottawa consensus statement : Selection and recruitment to the healthcare professions
Acknowledgments: The authors thank Tom Kinirons and Sarah Stott of Work Psychology Group for supporting the consensus group discussions and workshops, and in preparing the final manuscript. We also gratefully acknowledge Professor Lambert Schuwirth for his helpful comments on an earlier draft of this paperPeer reviewedPostprin
Non-Metabolic Membrane Tubulation and Permeability Induced by Bioactive Peptides
BACKGROUND: Basic cell-penetrating peptides are potential vectors for therapeutic molecules and display antimicrobial activity. The peptide-membrane contact is the first step of the sequential processes leading to peptide internalization and cell activity. However, the molecular mechanisms involved in peptide-membrane interaction are not well understood and are frequently controversial. Herein, we compared the membrane activities of six basic peptides with different size, charge density and amphipaticity: Two cell-penetrating peptides (penetratin and R9), three amphipathic peptides and the neuromodulator substance P. METHODOLOGY/PRINCIPAL FINDINGS: Experiments of X ray diffraction, video-microscopy of giant vesicles, fluorescence spectroscopy, turbidimetry and calcein leakage from large vesicles are reported. Permeability and toxicity experiments were performed on cultured cells. The peptides showed differences in bilayer thickness perturbations, vesicles aggregation and local bending properties which form lipidic tubular structures. These structures invade the vesicle lumen in the absence of exogenous energy. CONCLUSIONS/SIGNIFICANCE: We showed that the degree of membrane permeabilization with amphipathic peptides is dependent on both peptide size and hydrophobic nature of the residues. We propose a model for peptide-induced membrane perturbations that explains the differences in peptide membrane activities and suggests the existence of a facilitated “physical endocytosis,” which represents a new pathway for peptide cellular internalization
Distinct Behaviour of the Homeodomain Derived Cell Penetrating Peptide Penetratin in Interaction with Different Phospholipids
Penetratin is a protein transduction domain derived from the homeoprotein Antennapedia. Thereby it is currently used as a cell penetrating peptide to introduce diverse molecules into eukaryotic cells, and it could also be involved in the cellular export of transcription factors. Moreover, it has been shown that it is able to act as an antimicrobial agent. The mechanisms involved in all these processes are quite controversial.In this article, we report spectroscopic, calorimetric and biochemical data on the penetratin interaction with three different phospholipids: phosphatidylcholine (PC) and phosphatidylethanolamine (PE) to mimic respectively the outer and the inner leaflets of the eukaryotic plasma membrane and phosphatidylglycerol (PG) to mimic the bacterial membrane. We demonstrate that with PC, penetratin is able to form vesicle aggregates with no major change in membrane fluidity and presents no well defined secondary structure organization. With PE, penetratin aggregates vesicles, increases membrane rigidity and acquires an α-helical structure. With PG membranes, penetratin does not aggregate vesicles but decreases membrane fluidity and acquires a structure with both α-helical and β–sheet contributions.These data from membrane models suggest that the different penetratin actions in eukaryotic cells (membrane translocation during export and import) and on prokaryotes may result from different peptide and lipid structural arrangements. The data suggest that, for eukaryotic cell penetration, penetratin does not acquire classical secondary structure but requires a different conformation compared to that in solution
The Homeodomain Derived Peptide Penetratin Induces Curvature of Fluid Membrane Domains
BACKGROUND:Protein membrane transduction domains that are able to cross the plasma membrane are present in several transcription factors, such as the homeodomain proteins and the viral proteins such as Tat of HIV-1. Their discovery resulted in both new concepts on the cell communication during development, and the conception of cell penetrating peptide vectors for internalisation of active molecules into cells. A promising cell penetrating peptide is Penetratin, which crosses the cell membranes by a receptor and metabolic energy-independent mechanism. Recent works have claimed that Penetratin and similar peptides are internalized by endocytosis, but other endocytosis-independent mechanisms have been proposed. Endosomes or plasma membranes crossing mechanisms are not well understood. Previously, we have shown that basic peptides induce membrane invaginations suggesting a new mechanism for uptake, "physical endocytosis". METHODOLOGY/PRINCIPAL FINDINGS:Herein, we investigate the role of membrane lipid phases on Penetratin induced membrane deformations (liquid ordered such as in "raft" microdomains versus disordered fluid "non-raft" domains) in membrane models. Experimental data show that zwitterionic lipid headgroups take part in the interaction with Penetratin suggesting that the external leaflet lipids of cells plasma membrane are competent for peptide interaction in the absence of net negative charges. NMR and X-ray diffraction data show that the membrane perturbations (tubulation and vesiculation) are associated with an increase in membrane negative curvature. These effects on curvature were observed in the liquid disordered but not in the liquid ordered (raft-like) membrane domains. CONCLUSIONS/SIGNIFICANCE:The better understanding of the internalisation mechanisms of protein transduction domains will help both the understanding of the mechanisms of cell communication and the development of potential therapeutic molecular vectors. Here we showed that the membrane targets for these molecules are preferentially the fluid membrane domains and that the mechanism involves the induction of membrane negative curvature. Consequences on cellular uptake are discussed
Exploring factors affecting undergraduate medical students’ study strategies in the clinical years: a qualitative study
The aim of this study is to explore the effects of clinical supervision, and assessment characteristics on the study strategies used by undergraduate medical students during their clinical rotations. We conducted a qualitative phenomenological study at King Saud Bin Abdulaziz University for Health Sciences, College of Medicine, Riyadh, Saudi Arabia during the period from November 2007 to December 2008. We conducted semi-structured focus groups interviews with students and conducted individual interviews with teachers and students to explore students’ and clinical teachers’ perceptions and interpretations of factors influencing students’ study strategies. Data collection was continued until saturation was reached. We used Atlas-ti Computer Software (Version 5.2) to analyse the data, apply the obtained themes to the whole dataset and rearrange the data according to the themes and sub-themes. Analysis of data from interviews with twenty-eight students and thirteen clinical supervisors yielded three major themes relating to factors affecting students’ study strategies: “clinical supervisors and supervision”, “stress and anxiety” and “assessment”. The three themes we identified played a role in students’ adoption of different study strategies in the “community of clinical practice”. It appeared that teachers played a key role, particularly as assessors, clinical supervisors and as a source of stress to students
Medication errors in the Middle East countries: a systematic review of the literature
Background: Medication errors are a significant global concern and can cause serious medical consequences for
patients. Little is known about medication errors in Middle
Eastern countries. The objectives of this systematic review
were to review studies of the incidence and types of medication errors in Middle Eastern countries and to identify the main contributory factors involved.
Methods: A systematic review of the literature related to medication errors in Middle Eastern countries was conducted in October 2011 using the following databases: Embase, Medline, Pubmed, the British Nursing Index and the Cumulative Index to Nursing & Allied Health Literature. The search strategy included all ages and languages. Inclusion criteria were that the studies assessed or discussed the incidence of medication errors and contributory factors to medication errors during the medication treatment process in adults or in children.
Results: Forty-five studies from 10 of the 15 Middle Eastern
countries met the inclusion criteria. Nine (20%) studies focused on medication errors in paediatric patients. Twenty-one focused on prescribing errors, 11 measured administration errors, 12 were interventional studies and one assessed transcribing errors. Dispensing and documentation errors were inadequately evaluated. Error rates varied from 7.1% to 90.5% for prescribing and from 9.4% to 80% for administration.
The most common types of prescribing errors reported
were incorrect dose (with an incidence rate from 0.15% to
34.8% of prescriptions), wrong frequency and wrong
strength. Computerised physician rder entry and clinical pharmacist input were the main interventions evaluated. Poor
knowledge of medicines was identified as a contributory
factor for errors by both doctors (prescribers) and nurses
(when administering drugs). Most studies did not assess the
clinical severity of the medication errors.
Conclusion: Studies related to medication errors in the Middle Eastern countries were relatively few in number and of poor quality. Educational programmes on drug therapy for doctors and nurses are urgently needed
Small Changes in the Primary Structure of Transportan 10 Alter the Thermodynamics and Kinetics of its Interaction with Phospholipid Vesicles
ABSTRACT: The kinetics and thermodynamics of binding of transportan 10 (tp10) and four of its variants to phospholipid vesicles, and the kinetics of peptide-induced dye efflux, were compared. Tp10 is a 21-residue, amphipathic, cationic, cell-penetrating peptide similar to helical antimicrobial peptides. The tp10 variants examined include amidated and free peptides, and replacements of tyrosine by tryptophan. Carboxy-terminal amidation or substitution of tryptophan for tyrosine enhance binding and activity. The Gibbs energies of peptide binding to membranes determined experimentally and calculated from the interfacial hydrophobicity scale are in good agreement. The Gibbs energy for insertion into the bilayer core was calculated using hydrophobicity scales of residue transfer from water to octanol and to the membrane/ water interface. Peptide-induced efflux becomes faster as the Gibbs energies for binding and insertion of the tp10 variants decrease. If anionic lipids are included, binding and efflux rate increase, as expected because all tp10 variants are cationic and an electrostatic component is added. Whether the most important effect of peptide amidation is the change in charge or an enhancement of helical structure, however, still needs to be established. Nevertheless, it is clear that the changes in efflux rate reflect the differences in the thermodynamics of binding and insertion of the free and amidated peptide groups. We have recently reported a detailed investigation (1) o
Dynamic Measurements of Membrane Insertion Potential of Synthetic Cell Penetrating Peptides
This document is the Accepted Manuscript version of a Published Work that appeared in final form in Langmuir, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://doi.org/10.1021/la403370p.Cell penetrating peptides (CPPs) have been established as excellent candidates for mediating drug delivery into cells. When designing synthetic CPPs for drug delivery applications, it is important to understand their ability to penetrate the cell membrane. In this paper, anionic or zwitterionic phospholipid monolayers at the air-water interface are used as model cell membranes to monitor the membrane insertion potential of synthetic CPPs. The insertion potential of CPPs having different cationic and hydrophobic amino acids were recorded using a Langmuir monolayer approach that records peptide adsorption to model membranes. Fluorescence microscopy was used to visualize alterations in phospholipid packing due to peptide insertion. All CPPs had the highest penetration potential in the presence of anionic phospholipids. In addition, two of three amphiphilic CPPs inserted into zwitterionic phospholipids, but none of the hydrophilic CPPs did. All the CPPs studied induced disruptions in phospholipid packing and domain morphology, which were most pronounced for amphiphilic CPPs. Overall, small changes to amino acids and peptide sequences resulted in dramatically different insertion potentials and membrane reorganization. Designers of synthetic CPPs for efficient intracellular drug delivery should consider small nuances in CPP electrostatic and hydrophobic properties
- …