221 research outputs found

    Re-examination of the possible tidal stream in front of the LMC

    Get PDF
    It has recently been suggested that the stars in a vertical extension of the red clump feature seen in LMC color-magnitude diagrams could belong to a tidal stream of material located in front of that galaxy. If this claim is correct, this foreground concentration of stars could contribute significantly to the rate of gravitational microlensing events observed in the LMC microlensing experiments. Here we present radial velocity measurements of stars in this so-called ``vertical red clump'' (VRC) population. The observed stellar sample, it transpires, has typical LMC kinematics. It is shown that it is improbable that an intervening tidal stream should have the same distribution of radial velocities as the LMC, which is consistent with an earlier study that showed that the VRC feature is more likely a young stellar population in the main body of that galaxy. However, the kinematic data do not discriminate against the possibility that the VRC is an LMC halo population.Comment: 10 pages, 3 figures, 1 table. Accepted for publication in ApJ

    Local Field effects on the radiative lifetime of emitters in surrounding media: virtual- or real-cavity model?

    Full text link
    For emitters embedded in media of various refractive indices, different macroscopic or microscopic theoretical models predict different dependencies of the spontaneous emission lifetime on refractive index. Among those models are the two most promising models: the virtual-cavity model and the real-cavity model. It is a priori not clear which model is more relevant for a given situation. By close analysis of the available experimental results and examining the assumptions underlying the two models, we reach a consistent interpretation of the experimental results and give the criteria which model should apply for a given situation.Comment: 12 pages with 4 figure

    On the Uniform Random Generation of Non Deterministic Automata Up to Isomorphism

    Get PDF
    In this paper we address the problem of the uniform random generation of non deterministic automata (NFA) up to isomorphism. First, we show how to use a Monte-Carlo approach to uniformly sample a NFA. Secondly, we show how to use the Metropolis-Hastings Algorithm to uniformly generate NFAs up to isomorphism. Using labeling techniques, we show that in practice it is possible to move into the modified Markov Chain efficiently, allowing the random generation of NFAs up to isomorphism with dozens of states. This general approach is also applied to several interesting subclasses of NFAs (up to isomorphism), such as NFAs having a unique initial states and a bounded output degree. Finally, we prove that for these interesting subclasses of NFAs, moving into the Metropolis Markov chain can be done in polynomial time. Promising experimental results constitute a practical contribution.Comment: Frank Drewes. CIAA 2015, Aug 2015, Umea, Sweden. Springer, 9223, pp.12, 2015, Implementation and Application of Automata - 20th International Conferenc

    Minimal chordal sense of direction and circulant graphs

    Full text link
    A sense of direction is an edge labeling on graphs that follows a globally consistent scheme and is known to considerably reduce the complexity of several distributed problems. In this paper, we study a particular instance of sense of direction, called a chordal sense of direction (CSD). In special, we identify the class of k-regular graphs that admit a CSD with exactly k labels (a minimal CSD). We prove that connected graphs in this class are Hamiltonian and that the class is equivalent to that of circulant graphs, presenting an efficient (polynomial-time) way of recognizing it when the graphs' degree k is fixed

    Local field effects on the radiative lifetimes of Ce3+^{3+} in different hosts

    Full text link
    For emitters embedded in media of various refractive indices, different theoretical models predicted substantially different dependencies of the spontaneous emission lifetime on refractive index. It has been claimed that various measurements on 4f→4f4f\to 4f radiative transition of Eu3+^{3+} in hosts with variable refractive index appear to favor the real-cavity model [J. Fluoresc. 13, 201 (2003) and references therein, Phys. Rev. Lett. 91, 203903 (2003)]. We notice that 5d→4f5d\to 4f radiative transition of rare-earth ions, dominated by allowed electric-dipole transitions with line strengths less perturbed by the ligands, serves as a better test of different models. We analyze the lifetimes of 5d→4f5d\to 4f transition of Ce3+^{3+} in hosts of refractive indices varying from 1.4 to 2.2. The results favor the macroscopic virtual-cavity model based on Lorentz local field [J. Fluoresc. 13, 201 (2003)].Comment: 9pages, 1 figures, presented on AMN-2 and to appear on Current Applied Physic

    Single copy shRNA configuration for ubiquitous gene knockdown in mice

    Get PDF
    RNA interference through the expression of small hairpin RNA (shRNA) molecules has become a very promising tool in reverse mouse genetics as it may allow inexpensive and rapid gene function analysis in vivo. However, the prerequisites for ubiquitous and reproducible shRNA expression are not well defined. Here we show that a single copy shRNA-transgene can mediate body-wide gene silencing in mice when inserted in a defined locus of the genome. The most commonly used promoters for shRNA expression, H1 and U6, showed a comparably broad activity in this configuration. Taken together, the results define a novel approach for efficient interference with expression of defined genes in vivo. Moreover, we provide a rapid strategy for the production of gene knockdown mice combining recombinase mediated cassette exchange and tetraploid blastocyst complementation approaches

    Finite-dimensional Schwinger basis, deformed symmetries, Wigner function, and an algebraic approach to quantum phase

    Get PDF
    Schwinger's finite (D) dimensional periodic Hilbert space representations are studied on the toroidal lattice {\ee Z}_{D} \times {\ee Z}_{D} with specific emphasis on the deformed oscillator subalgebras and the generalized representations of the Wigner function. These subalgebras are shown to be admissible endowed with the non-negative norm of Hilbert space vectors. Hence, they provide the desired canonical basis for the algebraic formulation of the quantum phase problem. Certain equivalence classes in the space of labels are identified within each subalgebra, and connections with area-preserving canonical transformations are examined. The generalized representations of the Wigner function are examined in the finite-dimensional cyclic Schwinger basis. These representations are shown to conform to all fundamental conditions of the generalized phase space Wigner distribution. As a specific application of the Schwinger basis, the number-phase unitary operator pair in {\ee Z}_{D} \times {\ee Z}_{D} is studied and, based on the admissibility of the underlying q-oscillator subalgebra, an {\it algebraic} approach to the unitary quantum phase operator is established. This being the focus of this work, connections with the Susskind-Glogower- Carruthers-Nieto phase operator formalism as well as standard action-angle Wigner function formalisms are examined in the infinite-period limit. The concept of continuously shifted Fock basis is introduced to facilitate the Fock space representations of the Wigner function.Comment: 19 pages, no figure

    A Study of the Populations of X-ray Sources in the Small Magellanic Cloud with ASCA

    Get PDF
    The Advanced Satellite for Cosmology and Astrophysics (ASCA) has made multiple observations of the Small Magellanic Cloud (SMC). X-ray mosaic images in the soft (0.7--2.0 keV) and hard (2.0--7.0 keV) bands are separately constructed, and the latter provides the first hard X-ray view of the SMC. We extract 39 sources from the two-band images with a criterion of S/N>5, and conduct timing and spectral analyses for all of these sources. Coherent pulsations are detected from 12 X-ray sources; five of which are new discoveries. Most of the 12 X-ray pulsars are found to exhibit long-term flux variabilities, hence they are likely to be X-ray binary pulsars (XBPs). On the other hand, we classify four supernova remnants (SNRs) as thermal SNRs, because their spectra exhibit emission lines from highly ionized atoms. We find that XBPs and thermal SNRs in the SMC can be clearly separated by their hardness ratio (the ratio of the count rate between the hard and soft bands). Using this empirical grouping, we find many XBP candidates in the SMC, although no pulsations have yet been detected from these sources. Possible implications on the star-formation history and evolution of the SMC are presented by a comparison of the source populations in the SMC and our Galaxy.Comment: 11 pages, 39 Figures, to be published in ApJ Supplement. Tables (body and figures also) are available at http://www-cr.scphys.kyoto-u.ac.jp/member/jun/job

    Constraints on Intervening Stellar Populations Toward the Large Magellanic Cloud

    Get PDF
    The suggestion by Zaritsky & Lin that a vertical extension of the red clump feature in color-magnitude diagrams of the Large Magellanic Cloud (LMC) is consistent with a significant population of foreground stars to the LMC that could account for the observed microlensing optical depth has been challenged by various investigators. We respond by (1) examining each of the challenges presented and (2) presenting new photometric and spectroscopic data. We conclude that although the CMD data do not mandate the existence of a foreground population, they are entirely consistent with a foreground population associated with the LMC that contributes significantly (~ 50%) to the observed microlensing optical depth. From our new data, we conclude that <~ 40% of the VRC stars are young, massive red clump stars because (1) synthetic color-magnitude diagrams created using the star formation history derived indepdently from HST data suggest that < 50% of the VRC stars are young, massive red clump stars, (2) the angular distribution of the VRC stars is more uniform than that of the young (age < 1 Gyr) main sequence stars, and (3) the velocity dispersion of the VRC stars in the region of the LMC examined by ZL is inconsistent with the expectation for a young disk population. Each of these arguments is predicated on assumptions and the conclusions are uncertain. Therefore, an exact determination of the contribution to the microlensing optical depth by the various hypothesized foreground populations, and the subsequent conclusions regarding the existence of halo MACHOs, requires a detailed knowledge of many complex astrophysical issues, such as the IMF, star formation history, and post-main sequence stellar evolution. (abridged)Comment: Scheduled for publication in AJ in May 199
    • 

    corecore