1,957 research outputs found

    Hot Zero and Full Power Validation of PHISICS RELAP-5 Coupling

    Get PDF
    PHISICS is a reactor analysis toolkit developed over the last 3 years at the Idaho National Laboratory. It has been coupled with the reactor safety analysis code RELAP5-3D. PHISICS is aimed at providing an optimal trade off between needed computational resources (in the range of 10~100 computer processors) and accuracy. In fact, this range has been identified as the next 5 to 10 years average computational capability available to nuclear reactor design and optimization nuclear reactor cores. Detailed information about the individual modules of PHISICS can be found in [1]. An overview of the modules used in this study is given in the next subsection. Lately, the Idaho National Laboratory gained access plant data for the first cycle of a PWR, including Hot Zero Power (HZP) and Hot Full Power (HFP). This data provides the opportunity to validate the transport solver, the interpolation capability for mixed macro and micro cross section and the criticality search option of the PHISICS pack

    QED correction for H3+_3^+

    Get PDF
    A quantum electrodynamics (QED) correction surface for the simplest polyatomic and polyelectronic system H3+_3^+ is computed using an approximate procedure. This surface is used to calculate the shifts to vibration-rotation energy levels due to QED; such shifts have a magnitude of up to 0.25 cm−1^{-1} for vibrational levels up to 15~000 cm−1^{-1} and are expected to have an accuracy of about 0.02 cm−1^{-1}. Combining the new H3+_3^+ QED correction surface with existing highly accurate Born-Oppenheimer (BO), relativistic and adiabatic components suggests that deviations of the resulting {\it ab initio} energy levels from observed ones are largely due to non-adiabatic effects

    Avaliação de genótipos de milho no município de Brasiléia-Acre.

    Get PDF
    A cultura do milho no município de Brasiléia, assume significa tiva relevância sócio-econômica, contribuindo com 20,65% na produção global do Estado (CEPA/1988). Além de ser utilizado na alimentação humana e ração animal, o excedente da produção tem sido comercializado no mercado local, em Rio Branco e Cobija, cidade frobteiriça (Bolivia). A cultura apresenta problemas diversos: cultivares pouco produtivas, cultivo em consorcio, grandes espaçamentos entre plantas, cultivares de grande porte, índices elevados de acamamento, doenças, ocorrência de baixa produtividade. Estes problemas têm constituído em fatores limitantes a oferta de milho ao mercado, além de resultar no baixo retorno econômico da pequena produção. Com o objetivo de selecionar cultivares mais produtivas e resistentes aos principais problemas da região, a UEPAE de Rio Branco vem desenvolvendo trabalhos no Núcleo de Pesquisa -Quixadá, localizado em Brasiléia.bitstream/item/117388/1/1158.pd

    ExoMol molecular line lists XXX: a complete high-accuracy line list for water

    Get PDF
    A new line list for H2_216^{16}O is presented. This line list, which is called POKAZATEL, includes transitions between rotation-vibrational energy levels up to 41000 cm−1^{-1} in energy and is the most complete to date. The potential energy surface (PES) used for producing the line list was obtained by fitting a high-quality ab initio PES to experimental energy levels with energies of 41000 cm−1^{-1} and for rotational excitations up to J=5J=5. The final line list comprises all energy levels up to 41000 cm−1^{-1} and rotational angular momentum JJ up to 72. An accurate ab initio dipole moment surface (DMS) was used for the calculation of line intensities and reproduces high-precision experimental intensity data with an accuracy close to 1 %. The final line list uses empirical energy levels whenever they are available, to ensure that line positions are reproduced as accurately as possible. The POKAZATEL line list contains over 5 billion transitions and is available from the ExoMol website (www.exomol.com) and the CDS database

    High accuracy CO2_2 line intensities determined from theory and experiment

    Get PDF
    Atmospheric CO2_2 concentrations are being closely monitored by remote sensing experiments which rely on knowing line intensities with an uncertainty of 0.5\%\ or better. Most available laboratory measurements have uncertainties much larger than this. We report a joint experimental and theoretical study providing rotation-vibration line intensities with the required accuracy. The {\it ab initio} calculations are extendible to all atmospherically important bands of CO2_2 and to its isotologues. As such they will form the basis for detailed CO2_2 spectroscopic line lists for future studies.Comment: 5 pages, 2 figures, 1 tabl

    Analyzing synchronized clusters in neuron networks

    Get PDF
    The presence of synchronized clusters in neuron networks is a hallmark of information transmission and processing. Common approaches to study cluster synchronization in networks of coupled oscillators ground on simplifying assumptions, which often neglect key biological features of neuron networks. Here we propose a general framework to study presence and stability of synchronous clusters in more realistic models of neuron networks, characterized by the presence of delays, different kinds of neurons and synapses. Application of this framework to two examples with different size and features (the directed network of the macaque cerebral cortex and the swim central pattern generator of a mollusc) provides an interpretation key to explain known functional mechanisms emerging from the combination of anatomy and neuron dynamics. The cluster synchronization analysis is carried out also by changing parameters and studying bifurcations. Despite some modeling simplifications in one of the examples, the obtained results are in good agreement with previously reported biological data

    Design and implementation of a modular interior-point solver for linear optimization

    Get PDF
    This paper introduces the algorithmic design and implementation of Tulip, an open-source interior-point solver for linear optimization. It implements a regularized homogeneous interior-point algorithm with multiple centrality corrections, and therefore handles unbounded and infeasible problems. The solver is written in Julia, thus allowing for a flexible and efficient implementation: Tulip's algorithmic framework is fully disentangled from linear algebra implementations and from a model's arithmetic. In particular, this allows to seamlessly integrate specialized routines for structured problems. Extensive computational results are reported. We find that Tulip is competitive with open-source interior-point solvers on the H. Mittelmann's benchmark of barrier linear programming solvers. Furthermore, we design specialized linear algebra routines for structured master problems in the context of Dantzig-Wolfe decomposition. These routines yield a tenfold speedup on large and dense instances that arise in power systems operation and two-stage stochastic programming, thereby outperforming state-of-the-art commercial interior point method solvers. Finally, we illustrate Tulip's ability to use different levels of arithmetic precision by solving problems in extended precision

    A room temperature CO2_2 line list with ab initio computed intensities

    Get PDF
    Atmospheric carbon dioxide concentrations are being closely monitored by remote sensing experiments which rely on knowing line intensities with an uncertainty of 0.5% or better. We report a theoretical study providing rotation-vibration line intensities substantially within the required accuracy based on the use of a highly accurate {\it ab initio} dipole moment surface (DMS). The theoretical model developed is used to compute CO2_2 intensities with uncertainty estimates informed by cross comparing line lists calculated using pairs of potential energy surfaces (PES) and DMS's of similar high quality. This yields lines sensitivities which are utilized in reliability analysis of our results. The final outcome is compared to recent accurate measurements as well as the HITRAN2012 database. Transition frequencies are obtained from effective Hamiltonian calculations to produce a comprehensive line list covering all 12^{12}C16^{16}O2_2 transitions below 8000 cm−1^{-1} and stronger than 10−30^{-30} cm / molecule at T=296T=296~

    Order Picking Systems: A Queue Model for Dimensioning the Storage Capacity, the Crew of Pickers, and the AGV Fleet

    Get PDF
    Designing an order picking system can be very complex, as several interrelated control variables are involved. We address the sizing of the storage capacity of the picking bay, the crew of pickers, and the AGV fleet, which are the most important variables from a tactical viewpoint in a parts-to-pickers system. Although order picking is a widely explored topic in the literature, no analytical model that can simultaneously deal with these variables is currently available. To bridge this gap, we introduce a queue model for Markovian processes, which enables us to jointly optimise the aforementioned control variables. A discrete-event simulation is then used to validate our model, and we then test our proposal with real data under different operative scenarios, with the aim of assessing the usefulness of the proposal in real settings
    • …
    corecore