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Analyzing synchronized clusters 
in neuron networks
Matteo Lodi1, Fabio Della Rossa2,3, Francesco Sorrentino2 & Marco Storace1*

The presence of synchronized clusters in neuron networks is a hallmark of information transmission 
and processing. Common approaches to study cluster synchronization in networks of coupled 
oscillators ground on simplifying assumptions, which often neglect key biological features of neuron 
networks. Here we propose a general framework to study presence and stability of synchronous 
clusters in more realistic models of neuron networks, characterized by the presence of delays, 
different kinds of neurons and synapses. Application of this framework to two examples with different 
size and features (the directed network of the macaque cerebral cortex and the swim central pattern 
generator of a mollusc) provides an interpretation key to explain known functional mechanisms 
emerging from the combination of anatomy and neuron dynamics. The cluster synchronization 
analysis is carried out also by changing parameters and studying bifurcations. Despite some modeling 
simplifications in one of the examples, the obtained results are in good agreement with previously 
reported biological data.

Understanding the functional mechanisms of a given system/phenomenon and describing it through math-
ematical equations as simple as possible (according to the Occam’s razor principle) is the Holy Grail of modeling. 
Among the others, neuron networks are the object of many studies due to their complex behaviors; understand-
ing the functional mechanisms of information transmission and processing in this kind of networks is one of 
the most difficult and fascinating challenges faced by the scientific community, at the crossroad between many 
disciplines.

The level of abstraction used to describe neuron networks can significantly change according to the modeling 
goals, complexity of the network to be modeled and background knowledge1. Consequently, the basic elements 
of the nervous system (neurons and synapses) are modeled by trading off accuracy and complexity2. Neurons in 
the same network can be of different kinds and their synaptic connections, also of different kinds, can be either 
electrical or chemical, either excitatory or inhibitory, either directed or undirected, and may transmit signals 
with different delays. In this paper, we focus on deterministic models of these networks.

A commonly observed phenomenon in networks of neurons is the formation of synchronous clusters, i.e., 
groups of neurons that fulfill some synchrony conditions3–5, usually expressed in terms of temporal correlation 
between neural signals. These clusters are strongly related to information transmission and processing6. Living 
Nature is quite far from determinism, with unavoidable differences arising due to the presence of uncertainty/
noise in any measured quantity (variables and parameters); therefore, instead of exact clustering, slightly imper-
fect clusters will be observed in any real experiment. This notwithstanding, recent efforts have been devoted to 
apply nonlinear dynamics concepts and network theory to the neuroscience context1,7. This is done by resort-
ing to deterministic models (which is a first-order simplification) and studying the presence and the stability 
of synchronized clusters in networks based on one or more assumptions (second-order simplifications), such 
as identical neurons/synapses, weak interactions, absence of delays, or undirected/diffusive connections. As an 
example, the phase response curve (PRC) theory8,9 (grounded on the assumption of weak interactions) is often 
used to study both clustering in networks of (weakly coupled) generic oscillators and how two-cluster solutions 
and global synchrony arise through bifurcations in networks of neurons10,11. In this paper we propose a vari-
ational method that can be applied to characterize stability of the cluster synchronous solution, when some of the 
mentioned second-order simplifications are lifted. The proposed method allows finding better approximations 
to more realistic (i.e., not exactly synchronized) solutions and it provides understanding of basic cluster syn-
chronization mechanisms, whose robustness can be checked by resorting to other less deterministic approaches.
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On the whole, the method (based on the multi-layer network formalism) can be used to analyze exact cluster 
synchronization (CS) in neuron networks with directed connections, delays, couplings that depend on both the 
presynaptic and the postsynaptic neurons, and different kinds of nodes and synapses. The main novelty is the 
generalization to this general framework of a stability analysis method previously developed for a tighter class 
of networks12–20. Our goal is to achieve improved understanding of the causal influence that each network ele-
ment exerts on the other elements, thus shedding light on how functions emerge from structural connectivity, 
combined with neuronal dynamics. We successfully apply our approach to two neuron networks on different 
scales: the first one is the small-scale central pattern generator responsible for swim motion of the nudibranch 
mollusc Dendronotus iris; the second one is the large-scale cortical connectivity network of the macaque, which 
describes anatomical connections among different cortical areas. In both cases, the analysis is carried out also 
changing some significant network parameters (following real experiments that we use as benchmarks), by 
exploiting bifurcation analysis combined with the proposed CS analysis. The obtained results are in agreement 
with previously reported biological behaviors for both case studies, indicating that the proposed analysis can 
be useful to study real neuron networks, to predict the existence of stable synchronous clusters, and to perform 
virtual experiments in view of better focused real experiments.

Results
Network model.  The networks described in the Introduction can be modeled by the following set of 
dynamical equations, describing a multi-layer network21, ( i = 1, . . . ,N)

where xi ∈ R
n is the n-dimensional state vector of the i-th neuron, f̃i : Rn → R

n is the vector field of the isolated 
i-th neuron, σ k ∈ R is the coupling strength of the k-th kind of link, Ak is the possibly weighted and directed 
coupling matrix (or adjacency matrix) that describes the connectivity of the network with respect to the k-th 
kind of link, for which the interaction between two generic cells i and j is described by the nonlinear function 
hk : Rn × R

n → R
n , and δk is the axon transmission delay characteristic of the k-th kind of link. For example, 

electrical synapses (gap junctions) are almost instantaneous, whereas the delay associated with transmission of 
a signal through a chemical synapse may be considerably longer.

A neuron model is described by a state vector xi , whose first component Vi typically represents the membrane 
potential of the neuron. A synapse model can either neglect or include the neurotransmitter dynamics, there-
fore we can have instantaneous or dynamical synapses, respectively. In both cases, we assume that the synaptic 
coupling influences only the dynamics of Vi and not of the other state variables contained in xi : therefore, the 
first component of the vector hk(·) is a scalar function (called activation function) ak(Vi(t), xj(t − δk)) and the 
remaining components are null. For instantaneous synapses, the activation depends on the membrane poten-
tial of the pre- and post-synaptic neurons, therefore it can be expressed as ak(Vi(t),Vj(t − δk)) . By contrast, 
for dynamical synapses the activation ak is a function of a state variable skj  (in addition to Vi ), whose dynamics 
usually depends on the pre-synaptic membrane potential Vj (see Sect. 1 in the Supplementary Information for 
an example). For this reason, all dynamical synapses of kind k connecting the neuron j with other neurons share 
the same state skj  , which can be added to vector xj.

We further assume each individual node can be of one out of M different types (with M ≤ N ): f̃i(x) = f̃j(x) 
if i and j are of the same type, f̃i(x) �= f̃j(x) otherwise. Often, the difference (physical or functional) between 
two types of neurons is accounted for through a different value of one or more model parameters. Within this 
general framework, where all oscillators can be different, if M << N the vector fields f̃i are not all different, but 
belong to a restricted set of M models. Assuming that all node states share the same dimension n is not restric-
tive: in the case of state vectors xi with different dimensions ni , it is sufficient to define n = maxi ni and set to 0 
the components in excess.

Different from most models introduced in the literature, the set of equations (1) accounts for the following 
realistic properties of neuron networks: (i) each synapse depends (algebraically in the case of instantaneous/fast 
synapses or dynamically in the case of slower synapses) on the state of both the pre-synaptic and the post-synaptic 
neuron, (ii) each synapse between two neurons is in general a direct connection that can be of different kinds 
(such as either chemical inhibitory/excitatory or electrical excitatory), and (iii) the transmission of information 
along synapses can be non-instantaneous, which may be due in part to local synaptic filtering of exchanged 
spikes, and in part to the distribution of the axonal transmission delays22. We wish to emphasize that current 
methods developed to analyze CS in complex networks15,20 are unable to handle features (i), (ii) and (iii) above.

Cluster synchronization of the system in Eq. (1) is defined as xi(t) = xj(t) for any t and for i, j belonging to 
the same cluster of a certain partition. The set of the network nodes can be partitioned into equitable clusters 
(ECs), whose presence is necessary to achieve CS. Indeed, nodes in the same EC receive the same amount of 
weighted inputs of a certain type from the other ECs and from the EC itself. The method we propose for the analysis 
of CS in networks modeled by Eq. (1) consists of three main steps: (S1) a coloring algorithm to find the Q ECs 
Cq ( q = 1, . . . ,Q ) of the network, corresponding to a clustering C = {C1, . . . ,CQ} (see the example network in 
Fig. 1A, where N = 11 and Q = 4 ); (S2) a simplified dynamical model (called quotient network) whose Q nodes 
correspond to each one of the ECs (see Fig. 1B, which is the quotient network corresponding to Fig. 1A); (S3) 
an analysis of the cluster stability by linearizing Eq. (1) about a state corresponding to exact synchronization 
among all the nodes within each cluster.

A detailed description of steps S1 and S2 (with limited or no novelty) is provided in the Supplementary 
Information. The main novelty of this method is the analysis S3, which is tailored to Eq. (1) following, mutatis 

(1)ẋi = f̃i(xi(t))+

L∑

k=1

σ k
N∑

j=1

Ak
ijh

k(xi(t), xj(t − δk)),
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mutandis, the guidelines defined in previous works for less general networks15,20. Step S3 is detailed in Methods. 
A key step of this analysis is the construction of the matrix T that transforms the coupling matrices Ak into 
block diagonal matrices, Bk = TAkTT . This corresponds to a change of perturbation coordinates that converts 
the node coordinate system to the irreducible representation (IRR)15,20,23 coordinate system, thus evidencing the 
interdependencies among the perturbation components. For undirected networks, the N × N matrix T can be 
found as described in18,20 (As a technical note for the readers who are familiar with network partitioning, we 
point out that it was done for the orbital case20 and for the equitable single-layer case18). For directed networks, 
the matrix T can be constructed (as detailed in Sect. 4 in the Supplementary Information) for two classes of 
networks: (A) directed networks with clusters containing at most two nodes and (B) directed networks for which 
directed connections either originate from or end in trivial clusters, i.e., such that Ak

ij  = Ak
ji only if either i or j 

is in a cluster Cq with Nq = 1.
The key variational equation that we obtain in all these cases is reported here in compact form for ease of 

reference:

where η = [ηT1 , η
T
2 , . . . , η

T
N ]

T and the matrices ρ1 and ρ2 are defined in Eq. (5) in the Methods. This equation 
describes the perturbation dynamics, by separating that along the synchronous manifold (described by the first 
Q components ηi ) from that transverse to it (described by the last components ηi , i ∈ [Q + 1,N] ). Through the 
matrix ρ1 each perturbation η̇j only depends on ηj , while through the block diagonal matrix ρ2 , η̇j also depends on 
the other perturbation components through the matrices B1, . . . ,BL . Therefore, an inspection of the sub-blocks 
of each matrix Bk allows to quickly check whether there is coupling between the dynamics of perturbations ηi 
and ηj . To better illustrate this concept, let us consider the undirected, weighted network with N = 11 nodes, 
L = 2 kind of connections, and Q = 4 clusters ( C1,C2,C3,C4 ) shown in Fig. 1, panel A, with nodes color coded 
to indicate the ECs they belong to (As a technical note for the readers who are familiar with network partitioning, 
we point out that the partition of the network nodes is equitable and not orbital18). The corresponding quotient 
network is shown in panel B and is obtained by applying the above definition of EC. For instance, the blue node 
in panel B corresponds to the EC C3 : indeed, each blue node in panel A receives either one connection of type 1 
with weight 2 or two connections of type 1 with weight 1 from green nodes and two connections of type 1 with 
weight 1 from yellow nodes. Notice also the presence of a delay δ2 in the connection between nodes 5 and 6.

(2)η̇ = ρ1η(t)+ ρ2η(t − δk),

Figure 1.   Example. (A) Network with N = 11 nodes, L = 2 kinds of connection, undelayed ( k = 1 ) or with 
delay δ2 ( k = 2 ), and Q = 4 clusters ( C1 = {1, 2, 3, 4},C2 = {5, 6},C3 = {7, 8, 9},C4 = {10, 11} ). All connections 
are bi-directional and with weight 1, with the exception of the thick connections (between nodes 5-7, 1-5, 
6-9, 3-6), which have weight 2. The connection between nodes 5 and 6 has the delay δ2 . (B) Quotient network 
corresponding to (A). (C) Structure of the corresponding matrices T and B1 , illustrating their relation with the 
clusters. Network coloring (with a larger number of clusters) after the breaking of the red cluster if its loss of 
stability is due to the MLEs corresponding to either (D) the multi-color sub-block or (E) the red sub-block of 
matrix B1.
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Panel C shows the structure of the matrices T (left) and B1 (right) for this network. Notice that matrix B2 
has the same structure as B1 , whose gray blocks contain only 0 entries. The upper-left Q × Q block is related 
to the perturbation dynamics along the synchronous manifold. Each white sub-block in the lower-right 
(N − Q)× (N − Q) sub-matrix B1N−Q (with dashed black borders) describes the perturbation dynamics trans-
verse to the synchronous manifold, thus is associated with loss of synchronization, either transient or permanent 
depending on the cluster stability. For instance, the 1× 1 yellow (or blue or red) sub-block, is related to cluster 
C4 (or C3 or C1 , respectively), as pointed out in the corresponding row in matrix T, and describes the dynamics 
of the perturbation component η11 (or η5 or η10 , respectively); similarly, the 4× 4 multi-color sub-block corre-
sponds to clusters C1,C2,C3 . We remark that the structure of this sub-block implies that η̇6, η̇7, η̇8, η̇9 depend on 
η6, η7, η8, η9 but not on the other perturbations. Each transverse sub-block has an associated Maximum Laypunov 
Exponent (MLE) �i , which can be studied independently from each other.

The stability of each cluster Cq related to one or more sub-blocks depends on the maximum MLE �Cq 
among those associated to these sub-blocks: if �Cq is negative, the cluster Cq is stable, otherwise it is unsta-
ble. In the example, we computed the MLE associated to each sub-block: �1 (blue sub-block), �2 (multi-
color sub-block), �3 (red sub-block) and �4 (yellow sub-block). The stability of C4 depends on the sign of 
�C4

= �4 = max{�11} (i.e., the maximum component of the vector �11 ), whereas the stability of C1 depends 
on the sign of �C1

= max{�2,�3} , the stability of C2 depends on the sign of �C2
= �2 and the stability of C3 

depends on the sign of �C3
= max{�1,�2}.

Notice that the structure of the matrix B1 allows us to state something more about the cluster stability. Indeed, 
the red cluster is related to two sub-blocks: the 1× 1 red sub-block and the 4× 4 multi-color sub-block. This 
means what follows: it is possible for the red cluster to undergo isolated desynchronization (see panel E) if the 
MLE �3 becomes positive, while if the MLE �2 becomes positive, red, blue, and green clusters become unstable 
together (see panel D). More in general, by inspecting the BkN−Q block, we can easily determine whether two or 
more clusters are intertwined15, namely if the ODEs governing their stability are coupled: if a single sub-block is 
related to two or more clusters, they are intertwined. This example clearly shows that the stability of each cluster 
in a subset of intertwined clusters may depend on the stability of the other clusters that belong to the same subset, 
but is decoupled from the clusters outside of the subset. Therefore, intertwined clusters can lose synchronization 
without causing a loss of synchronization in the clusters outside the subset, as for the yellow cluster in panel D.

Case study 1: cluster analysis of the Dendronotus iris swim circuit.  As a first case study, we apply 
the proposed method to a Central Pattern Generator (CPG), a neural network responsible for organized patterns 
of organized activities, such as breathing, flying, swimming or walking24–27. In particular, we focus on the swim 
CPG of the Dendronotus iris nudibranch mollusc28–30. This CPG is composed of six neurons ( N = 6 ) of the same 
kind ( M = 1 ), connected through L = 3 different kinds of synapses (chemical inhibitory and excitatory, electri-
cal) with no delays, as shown in Fig. 2A. The coupling matrices A1 , A2 and A3 are provided in the dataset S1 of 
the Supplementary Information.

In this simple network it is quite easy to identify the nodes (belonging to the same EC) that receive the same 
amount of weighted inputs of a certain type from the other clusters; this directed network has Q = 3 ECs: C1 
(red nodes in Fig. 2A), C2 (green nodes) and C3 (blue nodes). Each cluster contains two nodes, therefore this 
network belongs to class (A).

Figure 2B shows the structure of the matrices T (left) and Bk (right) for the swim CPG network. We remark 
that the important information is embedded in the matrix structure and not in the values of its non-null entries.

The gray blocks correspond to 0 entries. As usual, in matrices Bk , the upper-left Q × Q block is related 
to the perturbation dynamics along the synchronous manifold. Each white sub-block in the lower-right 
(N − Q)× (N − Q) sub-matrix BkN−Q describes the perturbation dynamics transverse to the synchronous mani-
fold, thus is associated with loss of synchronization, either transient or permanent depending on the cluster 
stability.

Figure 2.   (A) Swim CPG of the Dendronotus iris nudibranch mollusc. Lines terminating in filled circles 
indicate inhibitory chemical synapses ( k = 1 ). Triangles indicate fast excitatory chemical synapses ( k = 2 ). 
Resistor symbols indicate electrical (gap junction) connections ( k = 3 ). Neurons 1-3 are located in the left half 
of the mollusc brain, neurons 4-6 in the right half of the brain. (B) Structure of the matrices T, B1 , B2 , and B3 for 
the swim CPG network. The gray blocks correspond to 0 entries.
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If we analyze the matrices Bk (related to the k-th connection type), we can see that:

•	 B1N−Q (related to chemical inhibitory synapses) has three 1× 1 sub-blocks, one per cluster ( C1 red, C2 green, 

C3 blue, according to Fig. 2 in the paper); this implies that for the network with only the chemical inhibitory 
synapses, the dynamics of the perturbation component η4 depends only on η4 through the term ρ1 in Eq. (2), 
whereas η̇5 depends only on η5 through both ρ1 and ρ2 (the same holds for η̇6 , mutatis mutandis);

•	 B2N−Q (related to chemical excitatory synapses) has one 1× 1 sub-block (with red borders) related to cluster 
C1 and one 2× 2 sub-block (with dashed green-blue borders) related to clusters C2 and C3 ; this means that 
for the network with only the chemical excitatory synapses the dynamics of the perturbation component 
η4 depends only on η4 through the term ρ1 in Eq. (2) (the same holds for η̇6 , mutatis mutandis), whereas η̇5 
depends on η6 through ρ2 and on η5 through ρ1;

•	 B3N−Q (related to electrical synapses) has one 3× 3 sub-block (with dashed multi-color borders) related to 
all clusters; the structure of this block implies that η̇4 depends on η4 (through ρ1 and ρ2 ) and η5 (through ρ2 ), 
η̇5 on η4 (through ρ2 ), η5 (through ρ1 ) and η6 (through ρ2 ), η̇6 on η5, η6 . Therefore, for the network with only 
the electrical synapses, the clusters C1,C2,C3 are intertwined.

In summary, if we consider the whole network, with all kinds of synapses, the three clusters C1,C2,C3 are 
intertwined.

Note that the transverse block is (N − Q)-dimensional, so that only intertwined symmetry breakings are 
possible: this excludes the possibility of isolated loss of synchrony for any of the clusters. In other words, either 
all the clusters are synchronized or none.

This CPG has been modeled according to previous experimental works28,30, using dynamical synapses, 
as detailed in Methods. This corresponds to state vectors xi with n = 7 components. By setting σ 1 = 120 nS, 
σ 2 = 100 nS (physiological values28,30) and σ 3 = 0.1 nS, the CPG oscillates as shown in Fig. 3B.

In cluster C1 , the two contralateral neurons emit spikes irregularly, whereas in clusters C2 and C3 the con-
tralateral neurons burst in anti-phase. This means that there are no synchronized clusters in the CPG. This is in 
perfect agreement with biological measurements28,30.

In order to analyze the functional role played by single synapses, neurophysiologists usually use neuroreceptor 
antagonists (curare in this case28,30) to selectively block specific chemical synapses. To simulate this pharmaco-
logical effect, we progressively reduced the chemical synaptic strengths σ 1 and σ 2 . The resulting 2D bifurcation 
diagram, shown in Fig. 3C, is obtained by analyzing the cluster stability on a grid of values of σ 1 and σ 2 , in the 
ranges [0, 120] nS and [0, 100] nS, respectively. The network exhibits three possible different behaviors, depend-
ing on the parameter setting. In the green region, all clusters are stable and the CPG is mono-stable, meaning 
that it admits only one stable solution, corresponding to these clusters. In particular, the contralateral neurons in 
clusters C2 and C3 are synchronized, as shown in Fig. 3A, and therefore the CPG does not produce a swimming 
pattern with left-right alternation. Moreover, the reduction of the synaptic strengths σ 1 and σ 2 halts bursting 
activity (In the bursting steady state, the membrane voltage of the neuron is made up of groups of two or more 
spikes (called bursts) separated by periods of inactivity). Again, this is in excellent agreement with biological 
measurements28,30. In the red region, all clusters become unstable (through a symmetry breaking caused by a 
subcritical pitchfork bifurcation of cycles), which corresponds to the standard behavior of the swim CPG: in this 
case, the CPG is again mono-stable and admits only the stable solution shown in Fig. 3B. In the yellow region, 
the CPG is bi-stable and admits both of the above stable solutions: which one is reached depends on the initial 
condition. The cluster synchronous solution disappears at the edge between the green and the yellow region, 
due to a fold of cycle bifurcation of this solution with the unstable solution generated by the symmetry breaking 
(subcritical pitchfork) bifurcation corresponding to the edge between the yellow and the red region.

As a final remark, we would like to emphasize that “virtually indistinguishable network activity can arise from 
widely disparate sets of underlying mechanisms, suggesting that there could be considerable animal-to-animal 
variability in many of the parameters that control network activity, and that many different combinations of syn-
aptic strengths and intrinsic membrane properties can be consistent with appropriate network performance”31. 
This is largely due to the fact that locomotory and other motor functions are controlled through robust mecha-
nisms enabled by homeostatic plasticity and is consistent with the observation of locomotive patterns (even 
coexisting) that are not generated by exact cluster synchronization32. However, by no means this detracts from 
the potentialities of our analysis method, which considerably expands our ability to understand physiological 
phenomena and measurements.

Case study 2: cluster analysis of the macaque cerebral cortex.  As a second example, following33–35, 
we apply the proposed method to a directed network (shown in Fig. 4) composed of N = 29 nodes, each one 
representing one target area (4 in occipital, 6 in parietal, 6 in temporal, 5 in frontal, 7 in prefrontal, and 1 in 
limbic regions) among the 91 areas of the macaque cerebral cortex. The neuron models that represent each area 
are of M = 2 kinds: 28 nodes are of kind i = 1 and one node (corresponding to area V1) is of kind i = 2 , which 
is due to this one node receiving a visual input35. The nodes are connected through L = 2 kinds of chemical 
excitatory synapses: one (for k = 1 ) that transmits undelayed signals with δ1 = 0 (in yellow), one (for k = 2 ) 
with delay δ2 > 0 (in blue).

The overall network is modeled by using the neuron and synapse equations described in Methods and the 
coupling matrices A1 and A2 provided in the Supplementary Information (dataset S2). The measured connection 
weights34, which range between 0 and 0.7636, have been quantized on four levels (0, 0.1, 0.5, 1) by replacing 
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each original weight with the closest one according to the Euclidean distance. After that, physical connections 
with length lower than 20 mm have been considered instantaneous (i.e., of kind k = 1 ) and the corresponding 
quantized weights have been stored in the matrix A1 , whereas those longer than 20mm have been considered 
delayed (i.e., of kind k = 2 ) and the corresponding quantized weights have been stored in the matrix A2 . These 
quantizations are justified by the fact that exact values for the coupling strengths and the delays reported in the 
literature are inevitably subject to measurement noise, and by the fact that, as we will see, they lead to the obser-
vation of functional mechanisms which are in agreement with physiological data, despite our simplifications.

The network non-trivial equitable clusters (consisting of more than one node) are shown in Fig. 4, where in 
panel A nodes of the same color (excluding black) belong to the same cluster: green for C1 , red for C2 and blue 
for C3 . All nodes in trivial orbits are colored black. Obviously, the presence of a large number of trivial clusters 
does not mean that the corresponding areas are independent: they are densely connected, as evidenced in Fig. 4A, 
but they cannot be exactly synchronized.

Despite the rough quantizations applied to synaptic weights and delays, the clusters displayed in Fig. 4B are 
consistent with some previously reported physiological findings. For instance, cluster C2 contains the nodes cor-
responding to visual areas 8l and 9/46v in the prefrontal cortex, which are known to be physically close and with 
similar connections34,36. The same holds for cluster C3 , which contains the nodes corresponding to the posterior 
and anterior portion of the inferotemporal cortex (TEO and TEpd, respectively).

The directed connections originate from or go to trivial clusters only, therefore this network belongs to class 
(B), hence its cluster stability can be analyzed through the proposed approach. The structure of the matrices 

Figure 3.   Time plots of the membrane voltages Vi(t) for the swim CPG in normal conditions (A) and in 
conditions emulating (by setting σ 1 = 0 and σ 2 = 0 ) a bath application of curare (B). Cluster C1 (top panel), 
C2 (middle panel), C3 (bottom panel). Blue lines: Vi(t) for i = 1, 2, 3 . Red lines: Vi(t) for i = 4, 5, 6 . (C) Two-
parameter map of the stable clusters for the swim CPG. Green region: all clusters ( C1,C2,C3 ) are stable (A). Red 
region: C1,C2,C3 lose their stability (B). Yellow region: bi-stability transition zone.
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T (left) and Bk (right) is provided and commented in the Supplementary Information (Sect. 6), leading to the 
conclusion that the three clusters C1,C2,C3 are not intertwined. The stability analysis has been carried out by 
varying the delay δ2 between 0 and 16 ms (8 evenly spaced values). The neurons belonging to cluster C1 do not 
receive any synaptic inputs, therefore the cluster transverse MLE is �C1

= 0 for any value of δ2 . Figure 5C, shows 
the MLEs �Cq of the other clusters Cq ( q = 2, 3 ) versus the delay δ2 . The green (red) regions in each plot �Cq (δ2) 
denote stability (instability) of the corresponding cluster Cq.

The vertical dotted lines mark the δ2 values corresponding to the time plots shown in the upper panels of 
Fig. 5: δ2 = 5 ms (A) and δ2 = 15 ms (B). These plots display the first state variable Vi of the neurons in cluster 
C3 . The panels show a window of 300 ms after a transient of 19.5 s. The breaking of this cluster is caused by a 
supercritical pitchfork bifurcation of cycles at each transition between the red and green regions, which generates 
two smaller stable trivial sub-clusters, each one producing one of the membrane voltages (black or red) in panel B.

From Fig. 5B it clearly emerges that the two neurons in cluster C3 display a phase lag for δ2 = 15 ms. The 
synchronization of macaque visual cortex areas in response to visual stimuli has been observed in many 
experiments35,37. In particular, the areas 8l and 9/46v respond in a very similar way to visual inputs to area V135. 
We thus set δ2 = 5 ms in order to ensure synchronization of these two areas.

Figure 4.   (A) Macaque cortical connectivity network: N = 29 nodes, M = 2 node models, L = 2 synapse 
models. Trivial clusters are black. Nodes of the same (non-black) color belong to the same cluster: C1 (green), C2 
(red), C3 (blue). (B) ECs of the macaque cortical network.

Figure 5.   Time plots Vi(t) for different values of δ2 (5 ms (A), 15 ms (B)) for cluster C3 . (C) MLE �Cq of each 
cluster Cq ( q = 2, 3 ) vs. coupling delay δ2 , for the macaque cortical connectivity network. Horizontal dashed 
lines: edge of stability. Vertical dotted lines: δ2 values corresponding to the time plots in panels A and B.
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We proceeded to validate our model against the quantizations applied to the synaptic weights and axon delays, 
described before. To this end, following35 we simulated its response to a pulsed input to the primary visual cortex 
(area V1). The response is propagated up the visual hierarchy, progressively slowing as it proceeds, as shown 
in Fig. 6. Early visual areas, such as V1 and V4, exhibit fast responses. By contrast, prefrontal areas, such as 8m 
and 24c, exhibit slower decays to the standard firing rate, with traces of the stimulus persisting several seconds 
after stimulation. This is in agreement with previous results35, which unveil a circuit mechanism for hierarchical 
processing of visual stimuli in the macaque cortex. Moreover, Fig. 6 evidences CS of the areas TEO and TEpd, 
corresponding to cluster C3 , as predicted by Fig. 5.

As a final remark, we point out that we analyzed the network as in35, in order to make fair comparisons. 
Nonetheless, the four nodes on the bottom right of panel A are disconnected from the rest of the network and 
are all black, meaning that they all belong to trivial clusters. Therefore, as these nodes cannot form nontrivial 
clusters, they could have been neglected in the analysis.

Discussion
The scientific literature counts many papers devoted to the analysis of cluster synchronization. Despite this, a 
modeling framework that can be applied to study cluster synchronization in neuron networks is still missing. This 
is due to the peculiar characteristics of this kind of networks, such as heterogeneous neuron populations, char-
acterized by different models or parameters, and heterogeneous directed and undirected synapses, with different 
communication delays, and whose strength may vary dynamically and nonlinearly based on the state of both 
pre-synaptic and post-synaptic neurons. The framework proposed in this paper is a fundamental step towards a 
method that fills this gap by enabling the analysis of cluster synchronization in any network with these features.

Previous works can be seen as particular cases of the proposed framework. For instance, reference14 has con-
sidered cluster synchronizations by assuming a coupling in the form of Eq. (1) and homogeneous nodal dynamics 
( M = 1 ). Reference19 has considered the same problem with the same formalism, but with heterogeneous nodes 
( M > 1 ). In both cases, the analysis is limited to finding the clusters, without analyzing their stability with a 
variational method. Other papers have studied networks with coupling depending only on either xj18 or xi − xj 
(diffusive or Laplacian coupling)17, but without consideration of communication delays.

The proposed method has allowed us to study and characterize cluster synchronization in two case studies 
of interest to the neuroscience community, and to find results in agreement with biological observations. The 
two examples are relatively simple, in terms of network complexity, but the approach outlined in the paper can 
be applied to more complex situations with more parameter variations among the individual oscillators (or 
completely different oscillators) as well as more values of the delays. The availability of a method for the analysis 
of this kind of networks is key to enabling further studies and to filling the existing gap between modeling and 
neuroscience. For instance, it is widely accepted that the balance between excitation and inhibition in connected 
sub-populations of neurons38,39 and the network structure (and in particular the presence of neuron modules or 
clusters) strongly affect the information transmission between neuronal assemblies40 and might play significant 
roles in processes ranging from simple sensory transmission to perception and attention as well as learning 
and termination of ongoing population activity (see41 and references therein). Moreover, studies show that 
neurophysiological heterogeneity in the cortex has clear influences on functional connectivity35,42. Therefore, 
the proposed method can be used to study cluster synchronization in these networks, as shown in the second 
case study. In addition, our method could be used as a diagnostic tool to distinguish between pathological and 
non-pathological situations characterized by different patterns of cluster synchronization16 and as a simulation 
tool to perform virtual experiments and to reduce the number of actual experiments.

input

V1

V4

8m

5

TEO

7A

9/46d

TEpd

5.20

24c

Figure 6.   Time responses (firing rates) to a pulse-shaped input to area V1.
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What are the limits of the proposed approach? A first limitation lies in the class of networks that can be 
completely analyzed. Many neuron networks contain both recurrent and feedforward connections, they are 
directed and do not belong to the two classes (A) and (B) that allow for an analysis of the interdependencies 
among synchronized clusters. Extending the proposed approach to a wider class of networks will be the subject 
of future research.

A second limitation is that, in the presence of delays δk , the network can admit other synchronous solutions43, 
which cannot be predicted by our method. In particular, when the coupled dynamics is periodic, it is possible 
that signals that propagate with different transmission delays become indistinguishable from each other44,45. 
For example, a delay that is equal to the oscillations period would generate a signal that is identical to the one 
in which no delay is present: as a result, connections that are treated with our method as different, are indeed 
identical. On the other hand, when the oscillatory behavior is very regular, it is also possible that time delay can 
cause two interactions to cancel with each other46, thus resulting in a change of the effective network topology.

As a third limitation, we point out that the proposed model is completely deterministic and assumes that a 
reliable model of the network is available. These are quite strong modeling assumptions, since in real neuron 
networks the presence of noise is unavoidable and not always neuron and synapse models can be determined 
accurately. Despite this and despite the absence of information about the basins of attraction of stable clusters, our 
approach can provide useful information. As stated in the Introduction, in a real network cluster synchronization 
will be approximate47, not exact, as measured by high correlation values between the membrane potentials of 
the neurons/nodes belonging to a given stable cluster. In this perspective, the patterns found with the proposed 
method are approximations to some more realistic solutions, which are characterized by higher complexity. Our 
analysis method is far from providing an accurate description of the dynamics of real neuron networks. This 
notwithstanding, it can help understanding basic cluster synchronization mechanisms, whose robustness can 
be checked by resorting to other less deterministic approaches. To this end, as stated in the introduction, we 
resort to the Occam’s razor principle and focus on deterministic models, but remove the assumption of identical 
dynamics and extend the applicability of tools for the identification and analysis of cluster synchronization20. In 
other words, in order to apply our method, we need to simplify in some reasonable way the real network (as done 
through quantization of some parameters in the case study 2) for finding exact clusters and the exact clusters 
that we find are approximations of the real (intrinsecally imperfect) clusters.

As a final remark, in this paper we focused on neuron networks, modeling them as multi-layer networks, 
where each layer corresponds to a different kind of neuron (thus leading to an M-layer network) and we can 
have both intra-layer and inter-layer connections. The proposed approach can be applied to other neuron-like 
multi-layer networks of oscillators, provided that they can be described through the proposed formalism. For 
instance, cluster synchronization in arrays of spin-torque oscillators48 or semiconductor laser arrays49 could be 
analyzed through the proposed method.

Methods
Step S3: analyzing cluster stability.  Here we present the method to analyze stability of clusters for the 
case of both nodes and connections of different types and for coupling functions that depend not only on the 
state ( xj ) of the nodes directly connected to the i-th cell, but also on the cell’s own state xi . In a previous work20, 
two of the authors proposed a similar analysis for the simpler case (not related to neurons) in which there are no 
communication delays and no dependence of the coupling function on xi . The approach grounds on two main 
steps: (i) writing the variational equations of the network about the synchronized solutions and (ii) expressing 
these variational equations in a new system of coordinates, which decouples the perturbation dynamics along 
the transverse manifold from that along the synchronous manifold.

We collect all state trajectories in the vector x(t) = [xT1 (t), x
T
2 (t), . . . , x

T
N (t)]

T . As it is possible for all the 
nodes within a cluster to synchronize, we define the q-th cluster state: sq(t) = xi(t) for all i in cluster Cq . Cor-
respondingly, the network can produce Q distinct synchronized motions {s1(t), s2(t), . . . , sQ(t)} , one per cluster. 
We collect them in the vector s(t) = [sT1 (t), s

T
2 (t), . . . , s

T
Q(t)]

T.
We analyze the dynamics of a small perturbation wi(t) = xi(t)− sqi (t) ( i = 1, . . . ,N ), where sqi (t) is the q 

cluster state for node i in cluster Cq , by linearizing around a specific network solution s(t),

where Di is the Jacobian operator computed with respect to the i-th argument of the function at which it is applied 
(subscript omitted if the function has only one argument).

All perturbations are collected in a column vector w(t) = [wT
1 (t), . . . ,w

T
N (t)]

T of length Nn, with wi ∈ R
n . 

Note that, due to the assumption of cluster synchronization, nodes within the generic cluster Cq share the same 
state ( xi(t) = xj(t) = sq(t), ∀t ⇔ i, j ∈ Cq ) and their isolated dynamics is described by the same function fq . 
Hence, it is possible to describe the perturbation dynamics as in Eq. (4),

(3)

ẇi(t) = Df̃i(sqi (t))wi(t)+

L∑

k=1

σ k
N∑

j=1

Ak
ijD1h

k(sqi (t), sqj (t − δk))wi(t)

+

L∑

k=1

σ k
N∑

j=1

Ak
ijD2h

k(sqi (t), sqj (t − δk))wj(t − δk),
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where Rk is the weighted adjacency matrix for the quotient network and for the connections of kind k (obtained 
as detailed in the Supplementary Information (Sect. 3)), ⊗ is the Kronecker product operator and the N × N 
diagonal matrix ECq has entries ECq ,ii = 1 , if node i ∈ Cq , 0 otherwise, i.e., this matrix identifies all the nodes i’s 
belonging to cluster Cq.

Notice that the presence of different neuron models determines different expressions for the Jacobian matrices 
Dfq in Eq. (4). Equation (4) is quite general: it is valid for both directed and undirected networks. What follows, 
instead, holds for undirected networks and for two classes of directed networks: (A) directed networks with 
clusters containing at most two nodes and (B) directed networks for which directed connections either originate 
from or end in trivial clusters, i.e., such that Ak

ij  = Ak
ji only if either i or j is in a cluster Cq with Nq = 1 . In these 

cases, we are able to find the irreducible representations of the multi-layer network symmetry group15,20,23, that is 
a change of coordinates η = (T ⊗ In)w that converts the node coordinate system to the IRR coordinate system, 
thus evidencing the interdependencies among the perturbation components. This change of coordinates requires 
attention, as for the case of Eq. (1) the interaction term hk depends not only on xj but also on xi , contrary to what 
was assumed in previous works15–18,20,50.

For undirected networks, the N × N matrix T can be found as described in previous works18,20. For directed 
networks of kind (A) and (B), the matrix T can be constructed as described in the Supplementary Information 
(Sect. 4). By applying the transformation T to Eq. (4), we obtain Eq. (5),

where Jq = TECqT
T and Bk = TAkTT . Notice that the change of coordinate is orthonormal, so that TT = T−1 . 

As proved in the Supplementary Information (Sect. 5), Jq is diagonal.
For undirected networks, each matrix Bk (and therefore also JqBkJp ) is block diagonal with two blocks: the 

upper-left of size Q × Q and the lower-right ( BkN−Q ) of size (N − Q)× (N − Q) . Therefore, through the IRR 
change of coordinates we have decoupled the perturbation dynamics along the synchronous manifold (described 
by the first Q components ηi ) from that transverse to it (described by the last components ηi , i ∈ [Q + 1,N] ). 
Moreover, each matrix BkN−Q is in turn block diagonal: as a consequence, the behavior of a perturbation with 
respect to the synchronous solution can be studied by considering many independent, smaller-size problems, 
each one related to one or more clusters18. In this way the stability of the synchronized clusters can be calculated 
using the separate, simpler, lower-dimensional ODEs of the transverse sub-blocks. We remark that η̇j depends 
on ηi only through the matrix JqBkJp , as Jq is diagonal (see Eq. (5)). In other words, the term ρ1 in Eq. (5) is a 
diagonal matrix, which relates η̇j only to ηj . By contrast, ρ2 relates η̇j also to the other perturbation components. 
Therefore, an inspection of the sub-blocks of Bk allows to quickly check whether there is coupling between the 
dynamics of perturbations ηi and ηj . Since the stability of each cluster depends on the evolution of some specific 
perturbations, the structure of blocks BkN−Q determines also whether two clusters are intertwined or not.

For directed networks, instead, JqBkJp is in general block upper-triangular with the upper part of size Q × N 
and the other of size (N − Q)× (N − Q) . The perturbation dynamics on the synchronous manifold depends in 
general on all perturbations (synchronous and transverse), whereas on the transverse manifold the perturbation 
dynamics depends on the transverse perturbations only.

In summary, for all kinds of networks (undirected and directed) we can study the stability of the cluster 
synchronous solution by computing the Lyapunov exponents corresponding to each transverse perturbation 
component. Moreover, for undirected networks and for directed networks of kind (A) or (B), we can also find the 
change of coordinates that provides the minimum-size blocks in the block BkN−Q of matrix Bk . This allows one to 
detect interdependencies in the stability of different clusters through the MLEs �m associated to each sub-block.

We can study the stability of clusters in terms of the Lyapunov exponents �ij (with i = 1, . . . ,N  and 
j = 1, . . . , n ), collected in vectors �i ∈ R

n and corresponding to the generic perturbation ηi(t) ∈ R
n.

In general, the first Q vectors �i correspond to the perturbation along the synchronous manifold, thus they 
are not related to the cluster stability; we are interested only in determining the vectors of Lyapunov exponents 

(4)
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corresponding to the perturbations transverse to the synchronous manifold, namely �Q+1, . . . �N . Therefore, 
each sub-block of JqBkJp is related to a subset of Lyapunov vectors �i , as shown in Fig. 1C, rightmost labels. Let 
i(m) be the set of indices corresponding to the m-th sub-block, i.e., the index of the rows corresponding to the 
m-th sub-block in matrix JqBkJp . For instance, in Fig. 1C, i(1) = 5 and i(2) = {6, 7, 8, 9} . Let

be the MLE related to the m-th sub-block. As the perturbations related to each sub-block are independent of 
those related to other blocks, we can compute the MLEs as follows:

The stability of each cluster Cq related to one or more sub-blocks depends on the MLE �Cq among those associ-
ated to these sub-blocks: if �Cq is negative, the cluster Cq is stable, otherwise it is unstable.

From a numerical standpoint, since we are finally interested only in the sign of the MLE, the integration of the 
i-th component of the variational equation (5) starts from a random initial condition and is stopped when ‖ηi(t)‖2 
either overcomes a given threshold ε̄ (meaning that the perturbation is diverging) or falls below another threshold 
ε , meaning that the perturbation is converging to zero. In the presented results, we set ε̄ = 104 and ε = 10−4.

Remark  If the network nodes have different state dimensions ni , the components in excess (used to have the 
same state length n = maxi ni ) correspond to null Lyapunov exponents, which must be neglected in the stability 
analysis.

Models used for the analysis of the swim CPG.  Chemical synapses are dynamical and modeled as 
follows30:

where the index k denotes inhibitory chemical synapses (for k = 1 ), excitatory chemical synapses ( k = 2 ) and 
instantaneous electrical synapses ( k = 3 ), j is the index of the pre-synaptic neuron and

with τs = 40ms, VT = −30 mV and Vs = 25mV. Notice that each chemical synapse which starts from node j has 
state sk,j , which is included into the j-th node state vector xj.

The activation functions for dynamical chemical synapses (inhibitory for k = 1 and excitatory for k = 2 ) and 
instantaneous electrical synapses ( k = 3 ) are

with E1 = −80mV, E2 = 0mV.
The neuron model51 has 5 state variables, namely [Vi , hi , ni ,χi ,Cai]

T . Therefore, the state vector xi has n = 7 
components [Vi , hi , ni ,χi ,Cai , s1,i , s2,i]

T:

where C = 1µF/cm2 , ρ = 0.0001mV−1 , Kc = 0.0085mV−1 and VCa = −180mV. Sodium current INa can be 
computed as INa = gNam

3
∞h(Vi − VNa) , where VNa = 30 mV and gNa = 4nS. The fast potassium current IK 

is IK = gKn
4
i (Vi − VK ) , where the reversal potential is VK = −75 mV and the maximum K+ conductance 

value is gK = 0.3nS. TTX-resistant calcium current ICa : ICa = gCaχi(Vi − VCa) , where the reversal potential 
is VCa = 140 mV and the maximum Ca2+ conductance is gCa = 0.03nS. Outward Ca2+-activated K+ current: 
IKCa = gKCa

Cai
0.5+Cai

(Vi − VK ) , where the reversal potential is VK = −75mV. Leak current Il : Il = gL(Vi − VL) , 
where the reversal potential VL = −40 mV and the maximum conductance value is gL = 0.0003nS. m∞ is defined 
as m∞ = αm

αm+βm
 , where αm = 0.1

50−Vs

e(50−Vs)/10−1
 and βm = 4e((25−Vs)/18) , with Vs =

127Vi+8265
105

.
Auxiliary functions for hi:
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where αh = 0.07e((25−Vs)/20) and βh = 1

e(55−Vs )/10+1
.

Auxiliary functions for ni:

where αn = 55−Vs

e(55−Vs )/10−1
 and βn = 0.125e((45−Vs)/80).

Auxiliary functions for χi:

Models used for the analysis of the macaque cortical network.  Each node of the network has been 
modeled through the Hindmarsh-Rose neuron model52:

with b = 2.7 , µ = 0.01 , s = 4 , xrest = −1.6 , and I1 = 2 or I2 = 3 , which distinguish the two node models.
The excitatory synapse activation functions ak ( k = 1, 2 ) are defined according to the fast threshold modula-

tion paradigm53:

with E = 2 , ν = 10 and θ = −0.6 . Therefore all synapses are instantaneous, but the membrane potentials trans-
mitted through electrical synapses are not delayed ( δ1 = 0 ), whereas those transmitted through chemical syn-
apses are delayed ( δ2  = 0).
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