331 research outputs found
The effect of direct interactions on Brownian diffusion
The effect of direct interactions between suspended particles on their diffusion coefficient is investigated starting from the generalized Einstein relation. It is shown that an attractive potential added to the hard core repulsion leads to a decrease of the diffusion coëfficiënt, whereas a repulsive term has the opposite effect. Simple examples of attractive and repulsive potentials are considered in some detail. Using these results the possibility to obtain information on the interaction potential between suspended particles from their diffusion coefficient is discussed
Scaling of dynamics with the range of interaction in short-range attractive colloids
We numerically study the dependence of the dynamics on the range of
interaction for the short-range square well potential. We find that,
for small , dynamics scale exactly in the same way as thermodynamics,
both for Newtonian and Brownian microscopic dynamics. For interaction ranges
from a few percent down to the Baxter limit, the relative location of the
attractive glass line and the liquid-gas line does not depend on . This
proves that in this class of potentials, disordered arrested states (gels) can
be generated only as a result of a kinetically arrested phase separation.Comment: 4 pages, 4 figure
Gelation as arrested phase separation in short-ranged attractive colloid-polymer mixtures
We present further evidence that gelation is an arrested phase separation in
attractive colloid-polymer mixtures, based on a method combining confocal
microscopy experiments with numerical simulations recently established in {\bf
Nature 453, 499 (2008)}. Our results are independent of the form of the
interparticle attractive potential, and therefore should apply broadly to any
attractive particle system with short-ranged, isotropic attractions. We also
give additional characterization of the gel states in terms of their structure,
inhomogeneous character and local density.Comment: 6 figures, to be published in J. Phys. Condens. Matter, special issue
for EPS Liquids Conference 200
Rayleigh-B\'{e}nard convection in a homeotropically aligned nematic liquid crystal
We report experimental results for convection near onset in a thin layer of a
homeotropically aligned nematic liquid crystal heated from below as a function
of the temperature difference and the applied vertical magnetic
field and compare them with theoretical calculations. The experiments cover
the field range 8 \alt h \equiv H/ H_{F} \alt 80 ( is the
Fr\'eedericksz field). For less than a codimension-two field the bifurcation is subcritical and oscillatory, with travelling- and
standing-wave transients. Beyond the bifurcation is stationary and
subcritical until a tricritical field is reached, beyond which it
is supercritical. The bifurcation sequence as a function of found in the
experiment confirms the qualitative aspects of the theoretical predictions.
However, the value of is about 10% higher than the predicted value and
the results for are systematically below the theory by about 2% at small
and by as much as 7% near . At , is continuous within
the experimental resolution whereas the theory indicates a 7% discontinuity.
The theoretical tricritical field is somewhat below the
experimental one. The fully developed flow above for is
chaotic. For the subcritical stationary bifurcation also
leads to a chaotic state. The chaotic states persist upon reducing the Rayleigh
number below , i.e. the bifurcation is hysteretic. Above the tricritical
field , we find a bifurcation to a time independent pattern which within
our resolution is non-hysteretic.Comment: 15 pages incl. 23 eps figure
Diffusive Evolution of Stable and Metastable Phases II: Theory of Non-Equilibrium Behaviour in Colloid-Polymer Mixtures
By analytically solving some simple models of phase-ordering kinetics, we
suggest a mechanism for the onset of non-equilibrium behaviour in
colloid-polymer mixtures. These mixtures can function as models of atomic
systems; their physics therefore impinges on many areas of thermodynamics and
phase-ordering. An exact solution is found for the motion of a single, planar
interface separating a growing phase of uniform high density from a
supersaturated low density phase, whose diffusive depletion drives the
interfacial motion. In addition, an approximate solution is found for the
one-dimensional evolution of two interfaces, separated by a slab of a
metastable phase at intermediate density. The theory predicts a critical
supersaturation of the low-density phase, above which the two interfaces become
unbound and the metastable phase grows ad infinitum. The growth of the stable
phase is suppressed in this regime.Comment: 27 pages, Latex, eps
Nematic Ordering of Rigid Rods in a Gravitational Field
The isotropic-to-nematic transition in an athermal solution of long rigid
rods subject to a gravitational (or centrifugal) field is theoretically
considered in the Onsager approximation. The new feature emerging in the
presence of gravity is a concentration gradient which coupled with the nematic
ordering. For rodlike molecules this effect becomes noticeable at centrifugal
acceleration g ~ 10^3--10^4 m/s^2, while for biological rodlike objects, such
as tobacco mosaic virus, TMV, the effect is important even for normal
gravitational acceleration conditions. Rods are concentrated near the bottom of
the vessel which sometimes leads to gravity induced nematic ordering. The
concentration range corresponding to phase separation increases with increasing
g. In the region of phase separation the local rod concentration, as well as
the order parameter, follow a step function with height.Comment: Full article http://prola.aps.org/abstract/PRE/v60/i3/p2973_
Phase behaviour of charged colloidal sphere dispersions with added polymer chains
We study the stability of mixtures of highly screened repulsive charged
spheres and non-adsorbing ideal polymer chains in a common solvent using free
volume theory. The effective interaction between charged colloids in an aqueous
salt solution is described by a screened-Coulomb pair potential, which
supplements the pure hard-sphere interaction. The ideal polymer chains are
treated as spheres that are excluded from the colloids by a hard-core
interaction, whereas the interaction between two ideal chains is set to zero.
In addition, we investigate the phase behaviour of charged colloid-polymer
mixtures in computer simulations, using the two-body (Asakura-Oosawa pair
potential) approximation to the effective one-component Hamiltonian of the
charged colloids. Both our results obtained from simulations and from free
volume theory show similar trends. We find that the screened-Coulomb repulsion
counteracts the effect of the effective polymer-mediated attraction. For
mixtures of small polymers and relatively large charged colloidal spheres, the
fluid-crystal transition shifts to significantly larger polymer concentrations
with increasing range of the screened-Coulomb repulsion. For relatively large
polymers, the effect of the screened-Coulomb repulsion is weaker. The resulting
fluid-fluid binodal is only slightly shifted towards larger polymer
concentrations upon increasing the range of the screened-Coulomb repulsion. In
conclusion, our results show that the miscibility of dispersions containing
charged colloids and neutral non-adsorbing polymers increases, upon increasing
the range of the screened-Coulomb repulsion, or upon lowering the salt
concentration, especially when the polymers are small compared to the colloids.Comment: 25 pages,13 figures, accepted for publication on J.Phys.:Condens.
Matte
Bone mineral content after renal transplantation
Forearm bone mineral content (BMC), as evaluated by photonabsorption densitometry, was measured in 28 cadaver kidney donor recipients who entered the study 8 weeks postoperatively and were followed up for 18 months. BMC decreased signifiantly (p<0.05) but marginally in placebo-treated patients (n=14) (initial BMC 1.09±0.25 g/cm; final BMC 1.05±0.24). Fourteen patients were prophylactically given 1,25(OH)2vitamin D3 in a dose which avoided hypercalcemia and hypercalciuria (sim0.25 µg/day); under 1,25(OH)2 vitamin D3 prophylaxis a significant decrease of forearm BMC was observed no longer (initial BMC 0.94±0.21 g/cm; final BMC 0.95±0.21), but the difference between placebo and 1,25(OH)2 vitamin D3 narrowly missed statistical significance (p=0.066).
It is concluded that the decrease of forearm BMC is negligible in transplant recipients with low steroid regimens. The data suggest a trend for prophylaxis with 1,25(OH)2 vitamin D3 to slightly ameliorate forearm (cortical) BMC loss
Phase behaviour of additive binary mixtures in the limit of infinite asymmetry
We provide an exact mapping between the density functional of a binary
mixture and that of the effective one-component fluid in the limit of infinite
asymmetry. The fluid of parallel hard cubes is thus mapped onto that of
parallel adhesive hard cubes. Its phase behaviour reveals that demixing of a
very asymmetric mixture can only occur between a solvent-rich fluid and a
permeated large particle solid or between two large particle solids with
different packing fractions. Comparing with hard spheres mixtures we conclude
that the phase behaviour of very asymmetric hard-particle mixtures can be
determined from that of the large component interacting via an adhesive-like
potential.Comment: Full rewriting of the paper (also new title). 4 pages, LaTeX, uses
revtex, multicol, epsfig, and amstex style files, to appear in Phys. Rev. E
(Rapid Comm.
- …