3,151 research outputs found

    Lattice constraints on the thermal photon rate

    Get PDF
    We estimate the photon production rate from an SU(3) plasma at temperatures of about 1.1Tc and 1.3Tc. Lattice results for the vector current correlator at spatial momenta k ~ (2-6)T are extrapolated to the continuum limit and analyzed with the help of a polynomial interpolation for the corresponding spectral function, which vanishes at zero frequency and matches to high-precision perturbative results at large invariant masses. For small invariant masses the interpolation is compared with the NLO weak-coupling result, hydrodynamics, and a holographic model. At vanishing invariant mass we extract the photon rate which for k \gsim 3T is found to be close to the NLO weak-coupling prediction. For k \lsim 2T uncertainties remain large but the photon rate is likely to fall below the NLO prediction, in accordance with the onset of a strongly interacting behaviour characteristic of the hydrodynamic regime.Comment: 20 pages. v2: clarifications adde

    Four-loop lattice-regularized vacuum energy density of the three-dimensional SU(3) + adjoint Higgs theory

    Full text link
    The pressure of QCD admits at high temperatures a factorization into purely perturbative contributions from "hard" thermal momenta, and slowly convergent as well as non-perturbative contributions from "soft" thermal momenta. The latter can be related to various effective gluon condensates in a dimensionally reduced effective field theory, and measured there through lattice simulations. Practical measurements of one of the relevant condensates have suffered, however, from difficulties in extrapolating convincingly to the continuum limit. In order to gain insight on this problem, we employ Numerical Stochastic Perturbation Theory to estimate the problematic condensate up to 4-loop order in lattice perturbation theory. Our results seem to confirm the presence of "large" discretization effects, going like aln⁥(1/a)a\ln(1/a), where aa is the lattice spacing. For definite conclusions, however, it would be helpful to repeat the corresponding part of our study with standard lattice perturbation theory techniques.Comment: 35 pages. v2: minor corrections, published versio

    Heavy quark medium polarization at next-to-leading order

    Full text link
    We compute the imaginary part of the heavy quark contribution to the photon polarization tensor, i.e. the quarkonium spectral function in the vector channel, at next-to-leading order in thermal QCD. Matching our result, which is valid sufficiently far away from the two-quark threshold, with a previously determined resummed expression, which is valid close to the threshold, we obtain a phenomenological estimate for the spectral function valid for all non-zero energies. In particular, the new expression allows to fix the overall normalization of the previous resummed one. Our result may be helpful for lattice reconstructions of the spectral function (near the continuum limit), which necessitate its high energy behaviour as input, and can in principle also be compared with the dilepton production rate measured in heavy ion collision experiments. In an appendix analogous results are given for the scalar channel.Comment: 43 pages. v2: a figure and other clarifications added, published versio

    Where does the hot electroweak phase transition end?

    Full text link
    We give the nonperturbative phase diagram of the four-dimensional hot electroweak phase transition. A systematic extrapolation a→0a \to 0 is done. Our results show that the finite temperature SU(2)-Higgs phase transition is of first order for Higgs-boson masses mH<66.5±1.4m_H<66.5 \pm 1.4 GeV. The full four-dimensional result agrees completely with that of the dimensional reduction approximation. This fact is of particular importance, because it indicates that the fermionic sector of the Standard Model (SM) can be included perturbatively. We obtain that the Higgs-boson endpoint mass in the SM is 72.4±1.772.4 \pm 1.7 GeV. Taking into account the LEP Higgs-boson mass lower bound excludes any electroweak phase transition in the SM.Comment: LATTICE98(electroweak), presented by Z. Fodor. Latex, 3 pages, 3 figu res. Comment line change

    The leading non-perturbative coefficient in the weak-coupling expansion of hot QCD pressure

    Get PDF
    Using Numerical Stochastic Perturbation Theory within three-dimensional pure SU(3) gauge theory, we estimate the last unknown renormalization constant that is needed for converting the vacuum energy density of this model from lattice regularization to the MSbar scheme. Making use of a previous non-perturbative lattice measurement of the plaquette expectation value in three dimensions, this allows us to approximate the first non-perturbative coefficient that appears in the weak-coupling expansion of hot QCD pressure.Comment: 16 pages. v2: published versio

    Renormalization of infrared contributions to the QCD pressure

    Full text link
    Thanks to dimensional reduction, the infrared contributions to the QCD pressure can be obtained from two different three-dimensional effective field theories, called the Electrostatic QCD (Yang-Mills plus adjoint Higgs) and the Magnetostatic QCD (pure Yang-Mills theory). Lattice measurements have been carried out within these theories, but a proper interpretation of the results requires renormalization, and in some cases also improvement, i.e. the removal of terms of O(a) or O(a^2). We discuss how these computations can be implemented and carried out up to 4-loop level with the help of Numerical Stochastic Perturbation Theory.Comment: 7 pages, 4 figures, talk presented at Lattice 2006 (High temperature and density

    Texture Classification by Wavelet Packet Signatures

    Get PDF
    This correspondence introduces a new approach to characterize textures at multiple scales. The performance of wavelet packet spaces are measured in terms of sensitivity and selectivity for the classification of twenty-five natural textures. Both energy and entropy metrics were computed for each wavelet packet and incorporated into distinct scale space representations, where each wavelet packet (channel) reflected a specific scale and orientation sensitivity. Wavelet packet representations for twenty-five natural textures were classified without error by a simple two-layer network classifier. An analyzing function of large regularity (D20) was shown to be slightly more efficient in representation and discrimination than a similar function with fewer vanishing moments (D6) In addition, energy representations computed from the standard wavelet decomposition alone (17 features) provided classification without error for the twenty-five textures included in our study. The reliability exhibited by texture signatures based on wavelet packets analysis suggest that the multiresolution properties of such transforms are beneficial for accomplishing segmentation, classification and subtle discrimination of texture
    • 

    corecore