302 research outputs found

    Health Status transitions in community-living elderly with complex care needs: a latent class approach.

    Get PDF
    ckground: For older persons with complex care needs, accounting for the variability and interdependency in how health dimensions manifest themselves is necessary to understand the dynamic of health status. Our objective is to test the hypothesis that a latent classification can capture this heterogeneity in a population of frail elderly persons living in the community. Based on a person-centered approach, the classification corresponds to substantively meaningful groups of individuals who present with a comparable constellation of health problems. Methods: Using data collected for the SIPA project, a system of integrated care for frail older people (n = 1164), we performed latent class analyses to identify homogenous categories of health status (i.e. health profiles) based on 17 indicators of prevalent health problems (chronic conditions; depression; cognition; functional and sensory limitations; instrumental, mobility and personal care disability) Then, we conducted latent transition analyses to study change in profile membership over 2 consecutive periods of 12 and 10 months, respectively. We modeled competing risks for mortality and lost to follow-up as absorbing states to avoid attrition biases. Results: We identified four health profiles that distinguish the physical and cognitive dimensions of health and capture severity along the disability dimension. The profiles are stable over time and robust to mortality and lost to follow-up attrition. The differentiated and gender-specific patterns of transition probabilities demonstrate the profiles' sensitivity to change in health status and unmasked the differential relationship of physical and cognitive domains with progression in disability. Conclusion: Our approach may prove useful at organization and policy levels where many issues call for classification of individuals into pragmatically meaningful groups. In dealing with attrition biases, our analytical strategy could provide critical information for the planning of longitudinal studies of aging. Combined, these findings address a central challenge in geriatrics by making the multidimensional and dynamic nature of health computationally tractable.This research was funded through a PhD dissertation grant supplied to the first author by the Quebec Network for Research on Aging

    On tolerable and desirable behaviors in supervisory control of discrete event systems

    Full text link
    We formulate and solve a new supervisory control problem for discrete event systems. The objective is to design a logical controller—or supervisor—such that the discrete event system satisfies a given set of requirements that involve event ordering. The controller must deal with a limited amount of controllability in the form of uncontrollable events. Our problem formulation considers that the requirements for the behavior (i.e., set of traces) of the controlled system are specified in terms of a “desired” behavior and a larger “tolerated” behavior. Due to the uncontrollable events, one may wish to tolerate behavior that sometimes exceeds the ideal desired behavior if overall this results in achieving more of the desired behavior. The general solution of our problem is completely characterized. The nonblocking solution is also analyzed in detail. This solution requires the study of a new class of controllable languages. Several results are proved about this class of languages. Algorithms to compute certain languages of interest within this class are also presented.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45034/1/10626_2005_Article_BF01797143.pd

    Algebraic entropy for algebraic maps

    Get PDF
    We propose an extension of the concept of algebraic entropy, as introduced by Bellon and Viallet for rational maps, to algebraic maps (or correspondences) of a certain kind. The corresponding entropy is an index of the complexity of the map. The definition inherits the basic properties from the definition of entropy for rational maps. We give an example with positive entropy, as well as two examples taken from the theory of Backlund transformations

    Recursive computation of limited lookahead supervisory controls for discrete event systems

    Full text link
    We continue the study of limited lookahead policies in supervisory control of discrete event systems undertaken in a previous paper. On-line control of discrete event systems using limited lookahead policies requires, after the execution of each event, the calculation of the supremal controllable sublanguage of a given language with respect to another larger language. These two languages are finite and represented by their tree generators, where one tree is a subtree of the other. These trees change dynamically from step to step, where one step is the execution of one event by the system. We show in this paper how to perform this calculation in a recursive manner, in the sense that the calculation for a new pair of trees can make use of the calculation for the preceding pair, thus substantially reducing the amount of computation that has to be done on-line. In order to make such a recursive procedure possible from step to step, we show how the calculation for a single step (i.e., for a given pair of trees) can itself be performed recursively by means of a backward dynamic programming algorithm on the vertices of the larger tree. These two nested recursive procedures are also extended to the limited lookahead version of the “supervisory control problem with tolerance.”Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45118/1/10626_2005_Article_BF01439177.pd

    Point Symmetries of Generalized Toda Field Theories

    Get PDF
    A class of two-dimensional field theories with exponential interactions is introduced. The interaction depends on two ``coupling'' matrices and is sufficiently general to include all Toda field theories existing in the literature. Lie point symmetries of these theories are found for an infinite, semi-infinite and finite number of fields. Special attention is accorded to conformal invariance and its breaking.Comment: 25 pages, no figures, Latex fil

    Solutions to the Optical Cascading Equations

    Full text link
    Group theoretical methods are used to study the equations describing \chi^{(2)}:\chi^{(2)} cascading. The equations are shown not to be integrable by inverse scattering techniques. On the other hand, these equations do share some of the nice properties of soliton equations. Large families of explicit analytical solutions are obtained in terms of elliptic functions. In special cases, these periodic solutions reduce to localized ones, i.e., solitary waves. All previously known explicit solutions are recovered, and many additional ones are obtainedComment: 21 page

    Bose-Hubbard model with occupation dependent parameters

    Full text link
    We study the ground-state properties of ultracold bosons in an optical lattice in the regime of strong interactions. The system is described by a non-standard Bose-Hubbard model with both occupation-dependent tunneling and on-site interaction. We find that for sufficiently strong coupling the system features a phase-transition from a Mott insulator with one particle per site to a superfluid of spatially extended particle pairs living on top of the Mott background -- instead of the usual transition to a superfluid of single particles/holes. Increasing the interaction further, a superfluid of particle pairs localized on a single site (rather than being extended) on top of the Mott background appears. This happens at the same interaction strength where the Mott-insulator phase with 2 particles per site is destroyed completely by particle-hole fluctuations for arbitrarily small tunneling. In another regime, characterized by weak interaction, but high occupation numbers, we observe a dynamical instability in the superfluid excitation spectrum. The new ground state is a superfluid, forming a 2D slab, localized along one spatial direction that is spontaneously chosen.Comment: 16 pages, 4 figure

    Lie point symmetries of difference equations and lattices

    Full text link
    A method is presented for finding the Lie point symmetry transformations acting simultaneously on difference equations and lattices, while leaving the solution set of the corresponding difference scheme invariant. The method is applied to several examples. The found symmetry groups are used to obtain particular solutions of differential-difference equations

    Optimised Traffic Flow at a Single Intersection: Traffic Responsive signalisation

    Full text link
    We propose a stochastic model for the intersection of two urban streets. The vehicular traffic at the intersection is controlled by a set of traffic lights which can be operated subject to fix-time as well as traffic adaptive schemes. Vehicular dynamics is simulated within the framework of the probabilistic cellular automata and the delay experienced by the traffic at each individual street is evaluated for specified time intervals. Minimising the total delay of both streets gives rise to the optimum signalisation of traffic lights. We propose some traffic responsive signalisation algorithms which are based on the concept of cut-off queue length and cut-off density.Comment: 10 pages, 11 eps figs, to appear in J. Phys.
    • …
    corecore