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Abstract

The Lie symmetries of a large class of generalized Toda field theories are studied and
used to perform symmetry reduction. Reductions lead to generalized Toda lattices on
one hand, to periodic systems on the other. Boundary conditions are introduced to
reduce theories on an infinite lattice to those on semi-infinite, or finite ones.

Résumé

Les symétries de Lie d’une grande classe de théories de champs de Toda sont étudiées et
utilisées pour faire des réductions par symétries. D’une part, ces réductions nous donnent
des treillis de Toda généralisés et, d’autre part, des systemes périodiques. Nous utilisons
des conditions frontieres pour réduire les théories définies sur un réseau infini a des cas
finis ou semi-infinis.



1 Introduction

In a recent article [I] we determined the Lie point symmetries of a class of equations that we called
“generalized Toda field theories”. They all involved various types of exponentials and had the form

n+na m-+ng
Un,zy = Fn7 Fn = Z Knm €xXp ( Z Hml“l) ) (11)

m=n—ni l=m—ng3

where K and H are some real constant matrices and nq, ..., n4 are some finite non-negative integers.
The symmetries were obtained independently for three different ranges of the variable n. Namely,
we considered the infinite case —oco < n < oo, the semi-infinite one, 1 < n < oo, and also the finite
case, 1 <n < N < oo.

In the infinite and semi-infinite cases eq. (1.1) was treated as a differential-difference equation.
If the range of n is finite, eq. (1.1) is simply a system of N differential equations for N unknowns
Up,.

A sizable literature exists on symmetries of difference equations [1]-[19]. Different approaches
differ in their treatment of independent variables and also in the degree of generalization of the
concept of “point symmetries” that is involved in passing from differential equations to difference
ones.

In Ref. [I] we adopted the “differential equation” approach proposed earlier [5]. Essentially,
eq. (1.1) was treated as a system of infinitely many differential equations for infinitely many fields
Up(z,y) with —oco < n < 00, or 1 < n < 0o, respectively.

The purpose of this article is to investigate applications of the obtained Lie point symmetries.
In particular we shall show how one can perform various types of symmetry reduction, using these
symmetries. The reductions will be from infinite systems to semi-infinite, finite or periodic ones. We
will also consider reductions of the number of independent variables, both continuous and discrete.
Each time a reduction is performed the resulting equations will inherit some of the symmetries of
the original system. We will show how to obtain the “inherited” symmetry group and will compare
it with the entire Lie point symmetry group of the reduced system.

The symmetries are point ones, in the sense that we assume that the symmetry algebra, i.e. the
Lie algebra of the symmetry group, is realized by vector fields of the form

0= f(%, Y, {uk})aﬂc + 77(33'7 Y, {uk})ay + Z ¢j(x7 Y, {uk}>8u17 (1'2)

where {uy} denotes the set of all fields (with k£ in an infinite, semi-infinite, or finite range, repec-
tively). The summation in eq. (1.2) is also over the appropriate range of values of j.

Thus, if eq. (1.1) is considered as an equation on a lattice, the coefficients of the vector field ©
can depend on the values of u; at all points of the lattice.

Whatever the range of the discrete variable n, the range of the interaction F,, in eq. (1.1) is
assumed to be finite, i.e. the integers nq, ..., ny4 are finite. Obviously, this allows much more general
interactions than nearest neighbour ones. Indeed eq. (1.1) is general enough to include all Toda
field theories that, to our knowledge, occur in the literature, be they integrable or not.

Thus, if we put H,,—1 = —H,, =1 and K,,, = —K,,y1 = 1, and all the other components of

H and K equal to zero, we obtain the “two-dimensional Toda lattice”
Up gy = 7170 — Ul 00 < n < 00 (1.3)

originally introduced by Mikhailov [20] and Fordy and Gibbons [21] and studied further in Ref. [22].
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Other well known Toda systems (with nearest neighbour interactions) are obtained if we set
Hyy = 5ml

n+no
Up,zy = g Ko €XP Uy, (1.4)
m=n—ni
or vice versa K, = Onm
n—+naq
Up,zy = €XP g H,u;. (1.5)
l=n—n3

All of these systems have been studied from the point of view of their integrability and solutions
[20]-[33], usually for a finite number of fields and usually for K, or respectively H, the Cartan matrix
of a simple, or affine, Lie algebra.

We shall call the theories (1.3), (1.4) and (1.5) type I, IT and III, respectively. We shall use the
n — oo generalization of an sl(n + 1,C) Cartan matrix, i.e. put K, 1, = Kyp1n = —1, Ky = 2,
Ky =0form #n, n+t1ineq. (1.4) for —oo < n < co. The same will be chosen for H in eq.
(1.5).

We note that the equations (1.4) and (1.5) are equivalent if the range of n is finite and the
matrices H and K are invertible. Indeed, if u, (z,y) satisfies eq. (1.4), then w = K ~'u satisfies eq.
(1.5) with H = K, and vice-versa. For —oo < n < 0o, or 1 < n < o0, this is no longer the case and
their symmetry groups, in general, are different.

The original Toda lattice [31, 35] is obtained from eq. (1.3) by symmetry reduction, using
translational invariance, i.e. looking for solutions invariant under translations generated by

Pzam_aya u’n(x?y) :un(t)a t=x+y. (16)

Here and below we use the letter P generically to denote a translation in some direction, specifying
the direction in each case. Similarly, D will denote a generic dilation. Its actual form will be
specified in each case.

Since the matrices H and K are constant, the same reduction takes eq. (1.1) into the generalized

Toda lattice
n—+no m-+ng
ij:n = Fn, Fn - Z Knm €xp ( Z Hml“l) . (17)

m=n—ni l=m—ng3

In Section 2, we study the case where the range of n in eq. (1.1) is infinite. We give the symmetry
algebra L of the general Toda field theory (1.1) as calculated in [1]. The same results concerning
the particular theories of types I, IT and III are also given. Eq. (1.7) inherits a subgroup of the
symmetry group of eq. (1.1). The Lie algebra Ly of the “inherited symmetry group” will be the
normalizer of the vector field P = 0, — 0, in Ly

nory,, P = {x € Ly|[z,P] = AP}, A € R. (1.8)

Commuting P with a general element of the algebra Ly, imposing the above normalizer condition
and letting the resulting vector field act on functions of ¢ and w,, we obtain the inherited symmetry
algebra of the Toda lattice. We establish that the entire symmetry algebra of the generalized Toda
lattice (1.7) coincides with the one inherited from L;. From this general result, the symmetry
algebras of the Toda lattices corresponding to the types I, II and III are obtained explicitely.

In Section 3, we restrict the range of the discrete variable to be 1 < n < oo. This means
that starting from some value ng of n the eq. (1.1) and (1.7) will be the same as in the infinite
case but for 1 < n < ng they will be modified. Their actual form will depend on the choice of
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the matrices K and H. Our procedure will be the same in all cases. We start from the already
established symmetry algebra in the case of infinitely many fields. Its prolongation will annihilate
all the equations in the system that are not modified by the boundary conditions. We apply the
prolonged vector field to the equations for 1 < n < ny and require that these equations also be
annihilated on the solution set. This will provide us with a subgroup of the original symmetry
group which is the symmetry group of the semi-infinite Toda field theory. It must then be checked
whether this “inherited” symmetry group is indeed the entire symmetry group of the corresponding
semi-infinite system, or only a subgroup of it.

In Section 4, we further restrict the range of the variable n and consider Toda field theories and
Toda lattices with a finite number of fields, 1 < n < N. We shall proceed as in the semi-infinite
case, that is start from the symmetries of Toda field theories, or Toda lattices, with —oco < n < oo.
We then impose that the general symmetry generator should also annihilate the modified equations
at the beginning and end of the chain. This is equivalent to starting from a semi-infinite Toda
theory and requiring that the symmetry generator should also annihilate the equation for n = N.

In Section 5, we view the relation between infinite and periodic (generalized) Toda systems as
symmetry reduction. Indeed, let us consider the Toda field theory (1.1) for n € Z and its symmetry
algebra. In order to be able to impose periodicity

U’n-‘rN(xvy) = Un(ft,y), (19)

the symmetry algebra of the generalized Toda field theories or of the generalized Toda lattices,
should be enlarged by adding the operator

N =9, (1.10)

to the corresponding symmetry algebra, whenever possible. This operator generates shifts (“trans-
lations” in m), though the corresponding translation group parameter must be by an integer,
n=n+A\, A€ Z. Imposing periodicity, as in eq. (1.9), means that N must be removed from the
symmetry algebra. The symmetry algebra of the periodic system, inherited from the infinite one,
will be the normalizer of N in the original algebra. The operator N of eq. (1.10) can also be used
to reduce differential equations on lattices to differential-delay equations [5].

In section 6, we study a further application of the symmetry group. We look at symmetry
reductions involving both discrete and continuous variables.

2 Symmetries of infinite generalized Toda field theories and
lattices

2.1 General results

Let us now consider the differential-difference eq. (1.1) and for —oco < n < oo impose that the
matrices H and K are band matrices with finite bands of constant width:

_ _J he(n) o € [p1,p2]
Hnm - n,n+o — { 0 o g [plij} 9 hpl(n) % OJ hm(n) ;é 07 pl S p2- (21)
Similarly,
_ _J ke(m) o € a1, ]
Knm - m4om — { 0 o g [Ch, q2] ’ kql (m) 7é 07 qu (m) ?A 07 q1 S qs. (22)
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We introduce the quantity p, which, as a function of n, is any particular solution of the inho-
mogeneous linear finite-difference equation

Z h pa—i—n = (2'3)

o=p1

and the quantities 14, j = 1,...,py —py and ¢! , I =1,..., g2 — q1, which are, respectively, linearly
independent solutions of the homogeneous linear equations

Zh ) Yosn =0, Zk ) Goim = 0. (2.4)

Without proof we present the following result [1].

Theorem 1 The symmetry algebra of the infinite Toda field theory (1.1) with —oo < n < 0o and
H and K satisfying (2.1) and (2.2) has a basis consisting of the following vector fields

X =&@)0s + )0y — & +my) Y pndu,, (2.52)
V= (rj(x) + s;(y Z V)0, (2.5b)
Zji = ( > sbilum) ( > wiﬁun) : (2.5¢)

j:17~--7p2_p17 lzla"'aq2_ql-

The functions &(z), n(y), r; (x) and s; (y) are arbitrary and p,, ¥ and ¢, are defined in eq. (2.3)
and (2.4), respectively.

The operator X reflects the fact that the generalized Toda field theories with —oco < n < oo
are always conformally invariant, be they integrable or not. If we have p, — p; > 1 the theory is
invariant under gauge transformations. If we have ¢ — ¢; > 1 a further type of gauge invariance
exists, represented by the operator Z;;. If Zj; is absent the gauge group is abelian, otherwise it is
non abelian. The commutation relations are given elsewhere [1].

The generalized Toda Lattice (1.7) is obtained from the generalized Toda field theory by sym-
metry reduction. Indeed, let us reduce by the translation generator P = 0, — 0, as in eq. (1.6). Eq.
(1.1) reduces to eq. (1.7). We calculate the symmetry subgroup of the symmetry group of eq. (1.1)
inherited by eq. (1.7) using the procedure explained in the Introduction. We obtain the following
result.

Theorem 2 The basis for the inherited symmetry algebra for the infinite Toda lattice (1.7) with H
and K satisfying (2.1) and (2.2) is given by

P=20, D=1t0; =2 > pnlu,

n=—oo

= i wnjam” Wj =1 i 2/}n]aun

n=—oo n=—oo



and Zj; as in eq. (2.5¢). The inherited algebra coincides with the actual symmetry algebra of eq.

(1.7).

Just as in the case of differential equations, there is no guarantee that the symmetry algebra
inherited from the original equation is the entire symmetry algebra of the reduced equation. How-
ever, in this case, a direct calculation of the symmetry algebra of the generalized Toda lattice shows
that its symmetry algebra is indeed given by eq. (2.6).

2.2 Special cases

A. The type I system
We have py — p; = ¢ — ¢1 = 1, and obtain

in egs. (2.5) and (2.6). Thus, (2.5a) is present, as are (2.5b) and (2.5¢). The labels j =1 =1 can
be dropped.
B. The type II system with K, , = K11, = —1, K, =2

We have p, = p; =0, ¢ — ¢ = 2 and hence

Uy = 0, ?b:n =1, QﬁL =m, p,=1, (2'8)

Conformal invariance (2.5a) is present but there are no gauge transformations (2.5b), nor (2.5¢).
C. The type III system with H, 1, = H,11, = -1, H,, =2
We have po —p1 =2, ¢o — ¢ = 0 and

1

1#711 = 17 wz =n, ¢m = 07 Pn = —§TL2. (29)

We have conformal invariance (2.5a), two operators V; and V3, no Z.
The symmetries of the corresponding generalized Toda lattices are obtained by putting the above
values of p,, ¥, and ¢, into eq. (2.6).

3 Reduction to semi-infinite theories

We will now calculate the symmetry groups of semi-infinite theories inherited from infinite Toda
systems using the procedure explained in the Introduction.

Rather than impose general and arbitrary boundary conditions on the matrices K and H of eq.
(1.1) we shall consider several special cases suggested by Lie group theory, that already occured in
the literature (usually for n varying in a finite range).

3.1 The semi-infinite field theories of type I related to simple Lie alge-
bras

Let us consider a semi-infinite generalization of the system (1.3). The field equation is given by

N
(87
Upy =) —sexp(e - U), (3.1)
=1

%
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where U = (uy,...,uy) is an N-tuple of real fields and (au,...,an) denote the simple roots of
some finite simple Lie algebra of rank N. If this Lie algebra is sl(N + 1,R) one obtains the usual
finite Toda field theory. Instead of this we shall consider the Toda field theory (1.3) and let the Lie
algebra root system run through semi-infinite extensions of the classical Cartan Lie algebras Ay,
By, Cy and Dy with N — oo (in one direction). We take the simple roots for the classical simple
Lie algebras as in Ref. [27].

For the system (1.3) the symmetry algebra (2.5) reduces to

X = E@)0s +n(y)dy + (& +my) Y 1y, (3.2a)
V=B +71) Y Ou, (3.2D)
Z = ( Z um)( Z &M). (3.2¢)

For the ordinary Toda lattice theory obtained by replacing w, ., by u,s in eq. (1.3), the
symmetry algebra (2.6) reduces to

P=0, D=td+2 i N0y, , (3.3a)
U = i O, W=t i Or. (3.3b)

and Z as in (3.2¢).
We now turn to the semi-infinite case. For each algebra we show the modified equations (for
n < ng). Those not shown coincide with eq. (1.3).
1. The Cartan A series
We have
U gy = —€"1 "2, (3.4)

Taking a general element of the algebra (3.2), applying its prolongation to eq. (3.4) and taking

into account that -
(Z u) =0 (3.5)
zy

i=1

we find that the entire symmetry algebra (3.2) leaves eq. (3.4) invariant. Hence the symmetry alge-
bras in the semi-infinite and infinite cases coincide, though in the semi-infinite case all summations
are for 1 <n < oco. Eq. (3.5) was used to show that the Z symmetry also survives.

The same is true for the Toda lattice equations in this case. Namely, the symmetry groups are
the same in the infinite and semi-infinite cases.
2. The Cartan B series

In this case, the first equation is

—u1

Uy oy = 27" — €172, (3.6)

Applying the same procedure, we find that conformal invariance remains and is realized as in eq.
(3.2a). The gauge symmetries (3.2b) and (3.2¢) do not survive.
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For the Toda lattice, the only surviving symmetries are the translation P and dilation D as in
eq. (3.3a).
3. The Cartan C series

We have

Uy gy = €72 — 172, (3.7)

In this case the gauge symmetries combine together with the conformal ones. The presence of eq.
(3.7) excludes invariance under the Z transformation of eq. (3.2¢).
The entire set of equations is invariant under the transformations generated by

infty
X = €@, 4100, + &+ m) 3 (1 3) 0 (3.5)

The surviving symmetries of the corresponding Toda lattice are P and D — U (see eq. (3.3)).
4. The Cartan D series
In this case, the first two equations must be distinguished. They are

Upay =€ 71— e, (3.9a)
Ug gy = € 712 41712 — 2713, (3.9b)
The surviving algebra is given by
X =&(@)0s +1(y)0y + (& +my) Y (0= 1), (3.10)
n=1

Reducing further to the corresponding Toda lattice, we find that it is invariant under translations
and dilations generated by P and D — 2U with P, D and U as in eq. (3.3).

Without presenting the proof [1] we state that the above symmetries, inherited from the infinite
case, represent the entire symmetry algebra in the semi-infinite case.

3.2 The semi-infinite Toda field theories of type II related to simple
Lie algebras

The infinite system is given by eq. (1.1) with H,,, = 0., and K a Cartan matrix. In other words
the infinite system is
Up gy = —€""7 1 4 2e"" — et (3.11)

and the entire symmetry algebra is generated by

o

X = £(2)0: + ()0 — E+my) D Ou,. (3.12)
The gauge transformations discussed in Section 2 are all absent since we have py = p;. It was
also shown in Section 2 that the existence of conformal invariance depends only on the matrix H
which in the field theory (1.4) is an (infinite) identity matrix. The A, B, C' and D Cartan series
have different matrices K but this has no influence on conformal invariance. Hence the infinite,
semi-infinite and finite theories all have the same symmetry algebra (3.12). Moreover the same
symmetries will exist even if K is not a Cartan matrix.

The reduction to the corresponding Toda lattice yields the symmetries

P=0, D=t0,—2)» 0, (3.13)
n=1

in agreement with eq. (2.6).



3.3 The semi-infinite field theories of type III related to simple Lie
algebras

We are now restricting the matrix K to satisfy K,,, = 6., and H to be a Cartan matrix. Thus, in
the infinite case, the equations we are studying are

Uy, gy = € U= F2URT U1 (3.14)

The symmetry algebra in this case is generated by

X =)0+ (00, + 56 +n) Y w0, (3.150)
V = Z (r1(z) + s1(y) + n(re(z) + 52(y))) Ou,, s (3.15b)

where &, 1, 71, 19, S1, and sg are arbitrary functions.
In the case of the corresponding infinite lattice the symmetry algebra is generated by

P =0, D =t0, + i n?0,,, (3.16a)
U, = i no,,, Wsy=t1 i Ny, - (3.16¢)

Now let us look at individual semi-infinite cases.
1. The Cartan A series

The first equation is

Uy gy = €71742, (3.17)

The others are as in (3.14). Requiring that eq. (3.17) also be annihilited by the symmetry algebra,
we obtain the constraint r; + s; = 0. Thus the surviving symmetry algebra is the same as in eq.
(3.15) but with r = s; = 0.

For the A Toda lattice, only P, D, Uy and W5 in (3.16) survive.

2. The Cartan B series

In this case the two first equations are modified. They are

2u1—u2

Ulay = © : (3.18)

_ ,—2u1+2uz—ug
U2 xy = € .

In this case only conformal invariance survives the reduction and takes the form

X = &(2)0, + n(y)o, 596"‘773/ > n(n—1)d, (3.19)

However a direct calculation of the symmetry algebra shows that there is a further gauge symmetry
given by

V= (r(x)+s(y)) Zanaun, a,=1, ap =2 for k>2. (3.20)

n=1



Similarly for the Toda lattice in this case the only inherited symmetries from (3.16) are P and
D —U,. From a direct calculation we obtain an additional gauge symmetry W = (ct+d) >~ | a,0,,
with a,, as in (3.20) and ¢ and d constants.
3. The Cartan C series

Only the first equation is modified and is

Uy gy = €717 202, (3.21)
The only surviving symmetries from eq. (3.15) are given by

X =&(2)0; +n(y)o, 51—1—771, Znn—2 i (3.22)

n=1

and gauge transformations generated by vector fields of the form (3.15b) with 7y = s = 0.
Similarly for the Toda lattice in this case the symmetries inherited from (3.16) are

P =0, D =10, + Z n(n —2)0,,
R (3.23)
=2 0w W=t} 0,
2. The Cartan D series
In this case the three first equations are modified. They are
Uty = 621“_usa
UQ,xy = e2ugiusa (324)
U3y = e*u1*u2+2u3*u4.
In this case only conformal invariance survives the reduction and takes the form
X = £(2)0, + n(y)d, gx +my) Y (0 = 3n+2)0 (3.25)
n=1

However a direct calculation of the symmetry algebra shows that there is a further gauge symmetry
given by

V= (r(z)+s(y)) Zan(?un, ag=ay=1, a,=2 for k>3 (3.26)
n=1
Similarly for the Toda lattice in this case the only inherited symmetries from (3.16) are P
and D — 3U; + 2U;. From a direct calculation we obtain an additional gauge symmetry W =
(ct+d)> " | a,0,, with a, as in (3.26) and ¢ and d constants.

4 Reduction to finite Toda systems

We will now calculate subgroups of symmetry groups of infinite Toda systems inherited by finite
ones. The reduction procedure is explained in the Introduction. It must then be verified that the
inherited groups indeed correspond to the complete symmetry groups of the finite systems.
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4.1 Finite Toda theories of type I

The symmetries of the semi-infinite Toda field theories and Toda lattices corresponding to A, B, C
and D Cartan series were established in Section 3.1 above.
The corresponding finite systems are obtained by setting uy = 0, £ > N + 1 and imposing the
equation
UNgy = €NV or uny = e NI (4.1)

respectively. It is easy to check that eq. (4.1) is invariant under the entire algebra (3.2), or (3.3),
respectively (with all summations in the range 1 < n < N).
We obtain the following result.

Theorem 3 The symmetries of the finite Ay, By, Cn and Dy Toda field theories of type (1.3)
are all inherited from the symmetries (3.2) of the infinite theories and coincide with those of the
corresponding semi-infinite ones. The same is true for the Ay, Bn, Cny and Dy Toda lattices.

4.2 Finite Toda theories of type II

The equations under consideration have the form (3.11). However we modify the matrix K in eq.
(1.4), the symmetries remain the same, namely conformal invariance (3.12) for Toda field theories
and translations P = 0, and dilations D = t0; — 2 ij:l 0., for Toda lattices. Thus, the symmetries
are the same in the infinite case and in all semi-infinite and finite cases.

4.3 Finite Toda theories of type III

The finite case is obtained from the semi-infinite one of Section 3.3 by setting v, =0, n > N 4+ 1
and imposing

—uN—1+2un
)

_ _ _—un—1+2u
UNzy = € Or Uy = € "NITEUN, (4.2)

respectively. The requirement that eq. (4.2) be invariant will restrict the symmetry algebras of
Section 3.3.

Let us consider individual cases.
1. The Cartan series Ay

In the A; /5o case we have the prolonged symmetry vector

pr = ()0, + 1(y) —+§j{[ (& + 1) + (r(z) + 5())n &m——@x+nwumw&mw}. (43)

This will annihilate the eq. (4.2) only if

N+1

(o) + sly) = =5 — (& +m). (1.4)

Thus, the inherited symmetry algebra of the finite Ay Toda field theory consists of the conformal
transformation generated by

N
X = &(2)8, +1(y)d, fsx +1y) Y n(n—N—1)d,,. (4.5)
n=1

11



Reducing to the Ay Toda lattice we have
N
P=0, D=td,+Y» n(n—N-1)d, (4.6)
n=1
2. The Cartan series By

We require that the algebra (3.19), (3.20) should annihilate eq. (4.2) (on its solution set). This
requires r + s = =2 N(N + 1)(&, + 1) and restricts the symmetry algebra to

X = €(@)0, + 1()0, + 3(& +1n,)

—N(N +1)d,, +2) [n(n—1) = N(N + 1)]5)%] .4

For the Toda lattice this reduces further to

1
Pz@t, th@t+§

n=2

~N(N+1)0y, +2) [n(n—1) = N(N + 1)]0%1 . (4.8)

3. The Cartan series Cy
Starting from the symmetries (3.22) and the remaining gauge transformations, we find that the
symmetries of the Cy Toda field theories reduce to conformal transformations, realized as

N

1
X = &(2)0: +n(y)9y + 5 (& +ny) Y [n(n—2) = N> +1)],,. (4.9)
n=1
For the Cy Toda lattice this reduces to
N
P=0, D=td+) [n(n—2)—N>+1]d,,. (4.10)
n=1

4. The Cartan series Dy
Starting from the symmetries (3.25) and (3.26) we find that eq. (4.2) reduces the symmetries to

1
X = &(2)0: +n(y)9, + Z(&L‘ + 1) { — N(N —1)(0u;, + Ou,)
(4.11) and respectively

+2) [(n—2)(n—1) = N(N — 1)]04

n=3

P:3t, D:tat+

N | —

[— N(N —1)(Ou, + 0Ou,)

N (4.12)
+2> [(n=2)(n—1) = N(N — 1)]64 :

n=3
The result is finally quite simple, namely:

Theorem 4 Toda field theories of the type (1.5) for a finite number N of fields, based on the
Cartan algebras Ay, By, Cn and Dy are invariant under conformal transformations only. They
are realized by the vector fields (4.5), (4.7), (4.9) and (4.11) for Ax, Bn, Cn and Dy, respectively.
The symmetries are inherited from the semi-infinite case (however, for the B and D series the
symmetries in the semi-infinite are not all inherited from the infinite case). The finite Toda lattices
of type (1.5) are invariant only under a translation, and the appropriate dilations.
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5 Reduction to periodic Toda systems

We will now study reductions from infinite (generalized) Toda systems to periodic ones using the
procedure explained in the Introduction. In order to be able to impose periodicity (1.9) and enlarge
the symmetry algebra of the infinite system by adding the vector field (1.10), a further condition is
necessary, namely that the recursion relations (2.3) and (2.4) should have constant coefficients:

ho(n) = ho(n+1),  ky(m) = ky(m + 1). (5.1)

Let us look at individual cases.

5.1 Periodic Toda systems of type I
The inherited symmetry algebra of the usual periodic Toda field theory (1.3) is given by

sz@x—yay, Plzﬁx, szay,
N-1 N

V= B@) 1] S O Z=3 3 O (52)

m=1 n=1

We see that the infinite dimensional conformal algebra is reduced to the Poincaré one. For the Toda
lattice the symmetry algebra (3.3) in the periodic case is reduced to {P,U, W, Z}.
The periodic Toda field theory (1.3) can be written as eq. (1.1) with

1 -1 0 ... 0 -1 0 0 ... 1
0o 1 -1 ... 0 1 -1 0 ... 0
K — : . H= 0o 1 -1 ... 0 |. (5.3)
0o 0 ... 1 -1 :
-1 0 ... 0 1 0o 0 ... 1 -1
The vector 1y = (1,1,...,1) is not in the image of H, the kernel of H and KT are one-dimensional.

From Theorem 2 of Ref. [I] we conclude that the periodic Toda field theories and lattices of type
(1.3) have no further symmetries: all symmetries are inherited.

5.2 Periodic Toda systems of type 11

All elements of the symmetry algebra (3.12) commute with N of eq. (1.10). Hence, in this case the
symmetry algebra is the same in the periodic case as in the infinite one (and also the semi-infinite
and all finite ones). Thus, the corresponding Toda field theory is conformally invariant, the Toda
lattice is invariant under translations P and dilations D as in eq. (3.13). No new symmetries, due
to the reduction, arise.

5.3 Periodic Toda systems of type III

The inherited symmetries from eq. (3.15) in this case are Poincaré and gauge invariance:
L=20,—y0,, Pr=0,, Py=20,,

V= 10) + 1) S O (5:4)
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For the corresponding periodic Toda lattice the only inherited symmetries are
P=0, U=203,, W=t0,,. (5.5)

These are the only symmetries of the system.

6 Symmetry reductions involving continuous and discrete
variables

In this Section, we will extend the symmetry algebras of the infinite Toda lattices by the generator
N given in eq. (1.10). It generates transformations of the independent variable n given by

n’=n+ N. (6.1)

The quantity N is to be viewed as a discrete group parameter. We can then act with N as if it were
an element of the symmetry algebra and calculate group transformations and invariants in exactly
the same manner as for differential equations.

6.1 The infinite Toda lattice of type I
The symmetry algebra in this case is given by eq. (3.3). All the possible reductions have been

studied in [5]. Let us look at the interesting case of the reduction by the generator
O + ady, (6.2)
where a is a constant [5]. The invariants are { = an — t and u,,. We thus consider solutions of the

infinite Toda lattice of the form

up(t) = F(§), £ =an —t. (6.3)
Substituing into (1.3) we find the following equation for F’
Fre = of 6-0=F@©) _ oF(O)=F(tta), (6.4)

A soliton solution of (6.4) is given by

1+exp[2§sin}‘1%ioz] Ca=7 a (6.5)
1 + exp [2€ sinh §] 2sinh §

Fg)=Tn (

6.2 The infinite Toda lattice of type II

The symmetry algebra in this case is given by eq. (3.13). We first consider reductions by the
generator (6.2). Invariant solutions then have the form given by eq. (6.3) and the function F

satisfies
Fee = _el(6=a) 4 9oF(&) _ oF(é+a) (6.6)

We can also consider reductions by the operator N + aD with D given in eq. (3.13). Invariant
solutions are then of the form

un(t) = F(n) —2an, n=te ™. (6.7)
The function F' satisfies the equation

E,, = —e2ef (€ 1 9eF () _ =2k (C ) (6.8)
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6.3 The infinite Toda lattice of type III

The symmetry algebra in this case is given by eq. (3.16). We first consider reductions by generators
of the form
N+aP+CU1+dU2+6W1+fW27 (69)

where P, Uy, Uy, W and Wy are given in (3.16). Invariant solutions will have the form

2 3

un(t) = F(§) + (c = E)n + (d +ae = &f) +af = (6.10)
where & = an — t. The function F' then satisfies the equation
Fee =exp[—F(§+a) +2F (&) — F(§€ —a) + ae — d + f¢]. (6.11)
In the case when d = ae and f = 0, we have a solution quadratic in &
F =+ B+, (6.12)
where « is determined in terms of a by the equation
200 = 20 (6.13)

The constants 3 and v are free.
We also consider reductions by generators of the form

N +bD + Uy + dUs + eWy + [, (6.14)

with b nonzero. In this case invariant solutions have the form

3 n2 bn

Un(t) = b% +d e+ 2—277(66 — Fabfn) + F(y), (6.15)

where 1 = te=". The function F must then satisfy the equation

Fyy = exp (—=d — F(e"n) +2F (n) — F(e™n)). (6.16)

7 Conclusions

The starting point of this article are the symmetries (2.5) of a large class of classical field theories
with exponential interactions described by eq. (1.1). The symmetries (2.5), established in our earlier
article [1] are present when the discrete variable n, labeling the fields, varies in an infinite range
—00 < n < co. The “interaction matrices” K and H in eq. (1.1) are very general band matrices
with bands of constant width (see eq. (2.1) and (2.2)). From eq. (2.5a) we see that the theory is
always conformally invariant. In view of eq. (2.5b), the theory is gauge invariant, unless the matrix
H is diagonal. If K is diagonal, the gauge group is abelian. If both H and K are non diagonal, the
gauge group is nonabelian.

If the generalized Toda field theories (1.1) correspond to difference equations with constant
coefficients, then the symmetry group includes a further transformation, namely translations of n

fi=n+N, NEeEZ, (7.1)
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formally generated by the operator (1.10). This occurs if the band matrices H and K, specified in
eq. (2.1) and (2.2), satisfy condition (5.1), that is, if the corresponding difference equations have
constant (n-independent) coefficients.

The symmetry group of the infinite (—oo < n < o0) generalized Toda field theory is applied to
study different types of reductions of the system.

It should be emphasized that when we perform symmetry reduction, for differential equations,
difference equations, or differential-difference ones, we obtain a symmetry algebra inherited from
the original symmetry algebra. This may not be the entire symmetry algebra of the reduced system.
A prime example for this is provided by the Laplace equation in three-dimensional euclidian space
Es. Tt is invariant under the conformal group O(4,1). If we reduce it by translational invariance to
the Laplace equation in Fy, we obtain the inherited symmetry group O(3,1). However, the reduced
equation is invariant under a much larger group, the infinite-dimensional conformal group F5. The
presence of this noninherited symmetry group is an indication of the fact that two-dimensional
theories differ qualitatively from three-dimensional ones. We have seen above that no such radical
difference between “inherited symmetries” and “all symmetries” occurs in reductions of Toda systems.

Among open problems, not addressed in this article, we mention two related ones. They are:
under what conditions on the matrices H and K are the generalized Toda systems (1.1) and (1.7)
integrable? When do these equations allow higher symmetries that depend on the derivatives of u,,,
or that are nonlocal?
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