326 research outputs found

    Effect of nucleon exchange on projectile multifragmentation in the reactions of 28Si + 112Sn and 124Sn at 30 and 50 MeV/nucleon

    Full text link
    Multifragmentation of quasiprojectiles was studied in reactions of 28Si beam with 112Sn and 124Sn targets at projectile energies 30 and 50 MeV/nucleon. The quasiprojectile observables were reconstructed using isotopically identified charged particles with Z_f <= 5 detected at forward angles. The nucleon exchange between projectile and target was investigated using isospin and excitation energy of reconstructed quasiprojectile. For events with total reconstructed charge equal to the charge of the beam (Z_tot = 14) the influence of beam energy and target isospin on neutron transfer was studied in detail. Simulations employing subsequently model of deep inelastic transfer, statistical model of multifragmentation and software replica of FAUST detector array were carried out. A concept of deep inelastic transfer provides good description of production of highly excited quasiprojectiles. The isospin and excitation energy of quasiprojectile were described with good overall agreement. The fragment multiplicity, charge and isospin were reproduced satisfactorily. The range of contributing impact parameters was determined using backtracing procedure.Comment: 11 pages, 8 Postscript figures, LaTeX, to appear in Phys. Rev. C ( Dec 2000

    Transscleral Optical Phase Imaging of the Human Retina.

    Get PDF
    In-vivo observation of the human retina at the cellular level is crucial to detect the first signs of retinal diseases and properly treat them. Despite the phenomenal advances in adaptive optics (AO) systems, clinical imaging of many retinal cells is still elusive due to the low signal-to-noise ratio induced by transpupillary illumination. We present a transscleral optical phase imaging (TOPI) method, which relies on high-angle oblique illumination of the retina, combined with AO, to enhance cell contrast. Examination of eleven healthy volunteer eyes, without pupil dilation, shows the ability of this method to produce in-vivo images of retinal cells, from the retinal pigment epithelium to the nerve fibre layer. This method also allows the generation of high-resolution label-free ex-vivo phase images of flat-mounted retinas. The 4.4°x 4.4° field-of-view in-vivo images are recorded in less than 10 seconds, opening new avenues in the exploration of healthy and diseased retinas

    Energy and angular momentum sharing in dissipative collisions

    Full text link
    Primary and secondary masses of heavy reaction products have been deduced from kinematics and E-ToF measurements, respectively, for the direct and reverse collisions of 93Nb and 116Sn at 25 AMeV. Light charged particles have also been measured in coincidence with the heavy fragments. Direct experimental evidence of the correlation of energy-sharing with net mass transfer has been found using the information from both the heavy fragments and the light charged particles. The ratio of Hydrogen and Helium multiplicities points to a further correlation of angular momentum sharing with net mass transfer.Comment: 21 pages, 20 figures. Submitted to European Physics Journal

    Inhomogeneous isospin distribution in the reactions of 28Si + 112Sn and 124Sn at 30 and 50 MeV/nucleon

    Get PDF
    We have created quasiprojectiles of varying isospin via peripheral reactions of 28Si + 112Sn and 124Sn at 30 and 50 MeV/nucleon. The quasiprojectiles have been reconstructed from completely isotopically identified fragments. The difference in N/Z of the reconstructed quasiprojectiles allows the investigation of the disassembly as a function of the isospin of the fragmenting system. The isobaric yield ratio 3H/3He depends strongly on N/Z ratio of quasiprojectiles. The dependences of mean fragment multiplicity and mean N/Z ratio of the fragments on N/Z ratio of the quasiprojectile are different for light charged particles and intermediate mass fragments. Observation of a different N/Z ratio of light charged particles and intermediate mass fragments is consistent with an inhomogeneous distribution of isospin in the fragmenting system.Comment: 5 pages, 4 Postscript figures, RevTe

    In Vivo Retinal Pigment Epithelium Imaging using Transscleral Optical Imaging in Healthy Eyes.

    Get PDF
    To image healthy retinal pigment epithelial (RPE) cells in vivo using Transscleral OPtical Imaging (TOPI) and to analyze statistics of RPE cell features as a function of age, axial length (AL), and eccentricity. Single-center, exploratory, prospective, and descriptive clinical study. Forty-nine eyes (AL: 24.03 ± 0.93 mm; range: 21.9-26.7 mm) from 29 participants aged 21 to 70 years (37.1 ± 13.3 years; 19 men, 10 women). Retinal images, including fundus photography and spectral-domain OCT, AL, and refractive error measurements were collected at baseline. For each eye, 6 high-resolution RPE images were acquired using TOPI at different locations, one of them being imaged 5 times to evaluate the repeatability of the method. Follow-up ophthalmic examination was repeated 1 to 3 weeks after TOPI to assess safety. Retinal pigment epithelial images were analyzed with a custom automated software to extract cell parameters. Statistical analysis of the selected high-contrast images included calculation of coefficient of variation (CoV) for each feature at each repetition and Spearman and Mann-Whitney tests to investigate the relationship between cell features and eye and subject characteristics. Retinal pigment epithelial cell features: density, area, center-to-center spacing, number of neighbors, circularity, elongation, solidity, and border distance CoV. Macular RPE cell features were extracted from TOPI images at an eccentricity of 1.6° to 16.3° from the fovea. For each feature, the mean CoV was &lt; 4%. Spearman test showed correlation within RPE cell features. In the perifovea, the region in which images were selected for all participants, longer AL significantly correlated with decreased RPE cell density (R Spearman, Rs = -0.746; P &lt; 0.0001) and increased cell area (Rs = 0.668; P &lt; 0.0001), without morphologic changes. Aging was also significantly correlated with decreased RPE density (Rs = -0.391; P = 0.036) and increased cell area (Rs = 0.454; P = 0.013). Lower circular, less symmetric, more elongated, and larger cells were observed in those &gt; 50 years. The TOPI technology imaged RPE cells in vivo with a repeatability of &lt; 4% for the CoV and was used to analyze the influence of physiologic factors on RPE cell morphometry in the perifovea of healthy volunteers. Proprietary or commercial disclosure may be found after the references

    The resource theory of quantum reference frames: manipulations and monotones

    Full text link
    Every restriction on quantum operations defines a resource theory, determining how quantum states that cannot be prepared under the restriction may be manipulated and used to circumvent the restriction. A superselection rule is a restriction that arises through the lack of a classical reference frame and the states that circumvent it (the resource) are quantum reference frames. We consider the resource theories that arise from three types of superselection rule, associated respectively with lacking: (i) a phase reference, (ii) a frame for chirality, and (iii) a frame for spatial orientation. Focussing on pure unipartite quantum states (and in some cases restricting our attention even further to subsets of these), we explore single-copy and asymptotic manipulations. In particular, we identify the necessary and sufficient conditions for a deterministic transformation between two resource states to be possible and, when these conditions are not met, the maximum probability with which the transformation can be achieved. We also determine when a particular transformation can be achieved reversibly in the limit of arbitrarily many copies and find the maximum rate of conversion. A comparison of the three resource theories demonstrates that the extent to which resources can be interconverted decreases as the strength of the restriction increases. Along the way, we introduce several measures of frameness and prove that these are monotonically nonincreasing under various classes of operations that are permitted by the superselection rule.Comment: 37 pages, 4 figures, Published Versio

    Thermal excitation of heavy nuclei with 5-15 GeV/c antiproton, proton and pion beams

    Get PDF
    Excitation-energy distributions have been derived from measurements of 5.0-14.6 GeV/c antiproton, proton and pion reactions with 197^{197}Au target nuclei, using the ISiS 4π\pi detector array. The maximum probability for producing high excitation-energy events is found for the antiproton beam relative to other hadrons, 3^3He and pˉ\bar{p} beams from LEAR. For protons and pions, the excitation-energy distributions are nearly independent of hadron type and beam momentum above about 8 GeV/c. The excitation energy enhancement for pˉ\bar{p} beams and the saturation effect are qualitatively consistent with intranuclear cascade code predictions. For all systems studied, maximum cluster sizes are observed for residues with E*/A \sim 6 MeV.Comment: 14 pages including 5 figures and 1 table. Accepted in Physics Letter B. also available at http://nuchem.iucf.indiana.edu

    Isotopic Scaling of Heavy Projectile Residues from the collisions of 25 MeV/nucleon 86Kr with 124Sn, 112Sn and 64Ni, 58Ni

    Full text link
    The scaling of the yields of heavy projectile residues from the reactions of 25 MeV/nucleon 86Kr projectiles with 124Sn,112Sn and 64Ni, 58Nitargets is studied. Isotopically resolved yield distributions of projectile fragments in the range Z=10-36 from these reaction pairs were measured with the MARS recoil separator in the angular range 2.7-5.3 degrees. The velocities of the residues, monotonically decreasing with Z down to Z~26-28, are employed to characterize the excitation energy. The yield ratios R21(N,Z) for each pair of systems are found to exhibit isotopic scaling (isoscaling), namely, an exponential dependence on the fragment atomic number Z and neutron number N. The isoscaling is found to occur in the residue Z range corresponding to the maximum observed excitation energies. The corresponding isoscaling parameters are alpha=0.43 and beta=-0.50 for the Kr+Sn system and alpha=0.27 and beta=-0.34 for the Kr+Ni system. For the Kr+Sn system, for which the experimental angular acceptance range lies inside the grazing angle, isoscaling was found to occur for Z<26 and N<34. For heavier fragments from Kr+Sn, the parameters vary monotonically, alpha decreasing with Z and beta increasing with N. This variation is found to be related to the evolution towards isospin equilibration and, as such, it can serve as a tracer of the N/Z equilibration process. The present heavy-residue data extend the observation of isotopic scaling from the intermediate mass fragment region to the heavy-residue region. Such high-resolution mass spectrometric data can provide important information on the role of isospin in peripheral and mid-peripheral collisions, complementary to that accessible from modern large-acceptance multidetector devices.Comment: 8 pages, 6 figures, submitted to Phys. Rev.
    corecore