2,962 research outputs found

    Comparison of selected submicron powder blending methods for dispersion alloys

    Get PDF
    Wet and dry blending nickel-aluminum oxide submicron powders for dispersion-strengthened alloy

    Natural Slow-Roll Inflation

    Full text link
    It is shown that the non-perturbative dynamics of a phase change to the non-trivial phase of λφ4\lambda\varphi^4-theory in the early universe can give rise to slow-rollover inflation without recourse to unnaturally small couplings.Comment: 14 LaTex pages (3 figures available on request), UNITUE-THEP-15-199

    Asymptotic freedom in a scalar field theory on the lattice

    Get PDF
    An alternative model to the trivial ϕ4\phi^4-theory of the standard model of weak interactions is suggested, which embodies the Higgs-mechanism, but is free of the conceptual problems of standard ϕ4\phi ^4-theory. We propose a N-component, O(N)-symmetric scalar field theory, which is originally defined on the lattice. The model can be motivated from SU(2) gauge theory. Thereby the scalar field arises as a gauge invariant degree of freedom. The scalar lattice model is analytically solved in the large N limit. The continuum limit is approached via an asymptotically free scaling. The renormalized theory evades triviality, and furthermore gives rise to a dynamically formed mass of the scalar particle.Comment: 10 pages, LaTeX, one figure and a motivation for the particular type of action adde

    Energy evolution in time-dependent harmonic oscillator

    Full text link
    The theory of adiabatic invariants has a long history, and very important implications and applications in many different branches of physics, classically and quantally, but is rarely founded on rigorous results. Here we treat the general time-dependent one-dimensional harmonic oscillator, whose Newton equation q¨+ω2(t)q=0\ddot{q} + \omega^2(t) q=0 cannot be solved in general. We follow the time-evolution of an initial ensemble of phase points with sharply defined energy E0E_0 at time t=0t=0 and calculate rigorously the distribution of energy E1E_1 after time t=Tt=T, which is fully (all moments, including the variance μ2\mu^2) determined by the first moment E1ˉ\bar{E_1}. For example, μ2=E02[(E1ˉ/E0)2(ω(T)/ω(0))2]/2\mu^2 = E_0^2 [(\bar{E_1}/E_0)^2 - (\omega (T)/\omega (0))^2]/2, and all higher even moments are powers of μ2\mu^2, whilst the odd ones vanish identically. This distribution function does not depend on any further details of the function ω(t)\omega (t) and is in this sense universal. In ideal adiabaticity E1ˉ=ω(T)E0/ω(0)\bar{E_1} = \omega(T) E_0/\omega(0), and the variance μ2\mu^2 is zero, whilst for finite TT we calculate E1ˉ\bar{E_1}, and μ2\mu^2 for the general case using exact WKB-theory to all orders. We prove that if ω(t)\omega (t) is of class Cm{\cal C}^{m} (all derivatives up to and including the order mm are continuous) μT(m+1)\mu \propto T^{-(m+1)}, whilst for class C{\cal C}^{\infty} it is known to be exponential μexp(αT)\mu \propto \exp (-\alpha T).Comment: 26 pages, 5 figure

    Adiabatic Compression of Soliton Matter Waves

    Full text link
    The evolution of atomic solitary waves in Bose-Einstein condensate (BEC) under adiabatic changes of the atomic scattering length is investigated. The variations of amplitude, width, and velocity of soliton are found for both spatial and time adiabatic variations. The possibility to use these variations to compress solitons up to very high local matter densities is shown both in absence and in presence of a parabolic confining potential.Comment: to appear in J.Phys.

    Stationary solutions of the one-dimensional nonlinear Schroedinger equation: I. Case of repulsive nonlinearity

    Full text link
    All stationary solutions to the one-dimensional nonlinear Schroedinger equation under box and periodic boundary conditions are presented in analytic form. We consider the case of repulsive nonlinearity; in a companion paper we treat the attractive case. Our solutions take the form of stationary trains of dark or grey density-notch solitons. Real stationary states are in one-to-one correspondence with those of the linear Schr\"odinger equation. Complex stationary states are uniquely nonlinear, nodeless, and symmetry-breaking. Our solutions apply to many physical contexts, including the Bose-Einstein condensate and optical pulses in fibers.Comment: 11 pages, 7 figures -- revised versio

    Primordial Earth mantle heterogeneity caused by the Moon-forming giant impact

    Get PDF
    The giant impact hypothesis for Moon formation successfully explains the dynamic properties of the Earth–Moon system but remains challenged by the similarity of isotopic fingerprints of the terrestrial and lunar mantles. Moreover, recent geochemical evidence suggests that the Earth's mantle preserves ancient (or "primordial") heterogeneity that pre-dates the Moon-forming giant impact. Using a new hydrodynamical method, we here show that Moon-forming giant impacts lead to a stratified starting condition for the evolution of the terrestrial mantle. The upper layer of the Earth is compositionally similar to the disk, out of which the Moon evolves, whereas the lower layer preserves proto-Earth characteristics. As long as this predicted compositional stratification can at least partially be preserved over the subsequent billions of years of Earth mantle convection, a compositional similarity between the Moon and the accessible Earth's mantle is a natural outcome of realistic and high-probability Moon-forming impact scenarios. The preservation of primordial heterogeneity in the modern Earth not only reconciles geochemical constraints but is also consistent with recent geophysical observations. Furthermore, for significant preservation of a proto-Earth reservoir, the bulk major-element composition of the Earth–Moon system may be systematically shifted toward chondritic values

    Anisotropy of the space orientation of radio sources. I: The catalog

    Full text link
    A catalog of the extended extragalactic radio sources consisting of 10461 objects is compiled based on the list of radio sources of the FIRST survey. A total of 1801 objects are identified with galaxies and quasars of the SDSS survey and the Veron-Veron catalog. The distribution of the position angles of the axes of radio sources from the catalog is determined, and the probability that this distribution is equiprobable is shown to be less then 10^(-7). This result implies that at Z equal to or smaller then 0.5, spatial orientation of the axes of radio sources is anisotropic at a statistically significant level.Comment: 8 pages, 7 figure
    corecore