35,658 research outputs found

    Coulomb blockade in graphene nanoribbons

    Full text link
    We propose that recent transport experiments revealing the existence of an energy gap in graphene nanoribbons may be understood in terms of Coulomb blockade. Electron interactions play a decisive role at the quantum dots which form due to the presence of necks arising from the roughness of the graphene edge. With the average transmission as the only fitting parameter, our theory shows good agreement with the experimental data.Comment: 4 pages, 2 figure

    Restrictions on the coherence of the ultrafast optical emission from an electron-hole pairs condensate

    Full text link
    We report on the transfer of coherence from a quantum-well electron-hole condensate to the light it emits. As a function of density, the coherence of the electron-hole pair system evolves from being full for the low density Bose-Einstein condensate to a chaotic behavior for a high density BCS-like state. This degree of coherence is transfered to the light emitted in a damped oscillatory way in the ultrafast regime. Additionally, the photon field exhibits squeezing properties during the transfer time. We analyze the effect of light frequency and separation between electron and hole layers on the optical coherence. Our results suggest new type of ultrafast experiments for detecting electron-hole pair condensation.Comment: 4 pages,3 figures, to be published in Physical Review Letters. Minor change

    Effect of external conditions on the structure of scrolled graphene edges

    Full text link
    Characteristic dimensions of carbon nanoscrolls - "buckyrolls" - are calculated by analyzing the competition between elastic, van der Waals, and electrostatic energies for representative models of suspended and substrate-deposited graphene samples. The results are consistent with both atomistic simulations and experimental observations of scrolled graphene edges. Electrostatic control of the wrapping is shown to be practically feasible and its possible device applications are indicated.Comment: 4 pages, 3 figure

    Turning waves and breakdown for incompressible flows

    Full text link
    We consider the evolution of an interface generated between two immiscible incompressible and irrotational fluids. Specifically we study the Muskat and water wave problems. We show that starting with a family of initial data given by (\al,f_0(\al)), the interface reaches a regime in finite time in which is no longer a graph. Therefore there exists a time t∗t^* where the solution of the free boundary problem parameterized as (\al,f(\al,t)) blows-up: \|\da f\|_{L^\infty}(t^*)=\infty. In particular, for the Muskat problem, this result allows us to reach an unstable regime, for which the Rayleigh-Taylor condition changes sign and the solution breaks down.Comment: 15 page

    Higher particle form factors of branch point twist fields in integrable quantum field theories

    Get PDF
    In this paper we compute higher particle form factors of branch point twist fields. These fields were first described in the context of massive 1+1-dimensional integrable quantum field theories and their correlation functions are related to the bi-partite entanglement entropy. We find analytic expressions for some form factors and check those expressions for consistency, mainly by evaluating the conformal dimension of the corresponding twist field in the underlying conformal field theory. We find that solutions to the form factor equations are not unique so that various techniques need to be used to identify those corresponding to the branch point twist field we are interested in. The models for which we carry out our study are characterized by staircase patterns of various physical quantities as functions of the energy scale. As the latter is varied, the beta-function associated to these theories comes close to vanishing at several points between the deep infrared and deep ultraviolet regimes. In other words, renormalisation group flows approach the vicinity of various critical points before ultimately reaching the ultraviolet fixed point. This feature provides an optimal way of checking the consistency of higher particle form factor solutions, as the changes on the conformal dimension of the twist field at various energy scales can only be accounted for by considering higher particle form factor contributions to the expansion of certain correlation functions.Comment: 25 pages, 4 figures; v2 contains small correction

    Can optical spectroscopy directly elucidate the ground state of C20?

    Get PDF
    The optical response of the lowest energy members of the C20 family is calculated using time-dependent density functional theory within a real-space, real-time scheme. Significant differences are found among the spectra of the different isomers, and thus we propose optical spectroscopy as a tool for experimental investigation of the structure of these important clusters.Comment: 11 pages, 2 figures. To be published in J. Chem. Phy

    Impurity induced spin-orbit coupling in graphene

    Full text link
    We study the effect of impurities in inducing spin-orbit coupling in graphene. We show that the sp3 distortion induced by an impurity can lead to a large increase in the spin-orbit coupling with a value comparable to the one found in diamond and other zinc-blende semiconductors. The spin-flip scattering produced by the impurity leads to spin scattering lengths of the order found in recent experiments. Our results indicate that the spin-orbit coupling can be controlled via the impurity coverage.Comment: 4 pages, 6 figure
    • …
    corecore