4,187 research outputs found

    Nanographitic coating enables hydrophobicity in lightweight and strong microarchitected carbon

    Get PDF
    Metamaterials that are lightweight, stiff, strong, scalable and hydrophobic have been achieved separately through different materials and approaches, but achieving them in one material is an outstanding challenge. Here, stereolithography and pyrolysis are employed to create carbon microlattices with cubic topology and a strut width of 60–70 ”m, with specific strength and stiffness of up to 468.62 MPa cm3 g−1 and 14.39 GPa cm3 g−1 at a density of 0.55 g cm−3, higher than existing microarchitected materials and approaching those of the strongest truss nanolattices. Subsequent fast Joule-heating then introduces a hierarchical nanographitic skin that enables hydrophobicity, with a water contact angle of 135 ± 2°, improving the hydrophilic response of pyrolytic carbon. As the Joule heating induced sp2-hybridization and nano-texturing predominantly affect the strut sheath, the effect on mechanical response is limited to a reduction in the distribution of compressive strength of as-pyrolyzed architectures by ~80% and the increase of the mean effective stiffness by ~15%. These findings demonstrate a technique to fabricate high strength, low density, and hydrophobic nanographite-coated carbon microlattices

    Real Space Imaging of Spin Polarons in Zn Doped SrCu2(BO3)2

    Full text link
    We report on the real space profile of spin polarons in the quasi two-dimensional frustrated dimer spin system SrCu2(BO3)2 doped with 0.16% of Zn. The 11B nuclear magnetic resonance spectrum exhibits 15 additional boron sites near non-magnetic Zn impurities. With the help of exact diagonalizations of finite clusters, we have deduced from the boron spectrum the distribution of local magnetizations at the Cu sites with fine spatial resolution, providing direct evidence for an extended spin polaron. The results are confronted with those of other experiments performed on doped and undoped samples of SrCu2(BO3)2.Comment: 9 pages, 11 figures, including supplemental materials. accepted for publication in PR

    Synthesis and Characterization of Homoleptic and Heteroleptic Ruthenium Polypyridine Complexes

    Get PDF
    The homoleptic ruthenium(II) complex Ru(C13H10N2)3(PF6)2, and heteroleptic ruthenium(II) complexes Ru(C13H10N2)2(C10H8N2)(PF6)2, and Ru(C13H10N2)(C10H8N2)2(PF6)2 have been prepared by following the standard synthetic procedure. These complexes were then purified by repeated column chromatography. The identity and the integrity of the complexes were confirmed by elemental analysis and mass spectroscopy. The calculated and the experimental values for the elemental analysis were in good agreement. The calculated and the experimental molar masses obtained were also identical. Ultravioletvisible absorption and emission spectroscopic methods were used to investigate the properties of these complexes. The absorption spectra of all complexes consist of a series of absorption bands in the ultraviolet and visible region. All three complexes show a strong emission band in the visible region. The emission maxima for the heteroleptic complexes are slightly redshifted

    Two-step Liquid Drop Model for Binary, Metal-rich Clusters

    Full text link
    It is shown that differences observed between the ionization potentials of the molecular-doped metallic clusters and those corresponding to the bare metallic ones can be explained by a two-step approach of the classical Liquid Drop Model. This approach takes into account the distinct physical properties of the interface between the molecular core and the metallic shell. Also, it is shown that the presence of the molecular core may act in the determination of the predominant channel of the coulombic fission.Comment: 8 page

    Artificial Incoherent Speckles Enable Precision Astrometry and Photometry in High-Contrast Imaging

    Get PDF
    State-of-the-art coronagraphs employed on extreme adaptive optics enabled instruments are constantly improving the contrast detection limit for companions at ever-closer separations from the host star. In order to constrain their properties and, ultimately, compositions, it is important to precisely determine orbital parameters and contrasts with respect to the stars they orbit. This can be difficult in the post-coronagraphic image plane, as by definition the central star has been occulted by the coronagraph. We demonstrate the flexibility of utilizing the deformable mirror in the adaptive optics system of the Subaru Coronagraphic Extreme Adaptive Optics system to generate a field of speckles for the purposes of calibration. Speckles can be placed up to 22.5 λ/D from the star, with any position angle, brightness, and abundance required. Most importantly, we show that a fast modulation of the added speckle phase, between 0 and π, during a long science integration renders these speckles effectively incoherent with the underlying halo. We quantitatively show for the first time that this incoherence, in turn, increases the robustness and stability of the adaptive speckles, which will improve the precision of astrometric and photometric calibration procedures. This technique will be valuable for high-contrast imaging observations with imagers and integral field spectrographs alike

    Effects of hole-doping on the magnetic ground state and excitations in the edge-sharing CuO2_2 chains of Ca2+x_{2+x}Y2−x_{2-x}Cu5_5O10_{10}

    Full text link
    Neutron scattering experiments were performed on the undoped and hole-doped Ca2+x_{2+x}Y2−x_{2-x}Cu5_5O10_{10}, which consists of ferromagnetic edge-sharing CuO2_2 chains. It was previously reported that in the undoped Ca2_2Y2_2Cu5_5O10_{10} there is an anomalous broadening of spin-wave excitations along the chain, which is caused mainly by the antiferromagnetic interchain interactions [Matsuda etet al.al., Phys. Rev. B 63, 180403(R) (2001)]. A systematic study of temperature and hole concentration dependencies of the magnetic excitations shows that the magnetic excitations are softened and broadened with increasing temperature or doping holes irrespective of QQ direction. The broadening is larger at higher QQ. A characteristic feature is that hole-doping is much more effective to broaden the excitations along the chain. It is also suggested that the intrachain interaction does not change so much with increasing temperature or doping although the anisotropic interaction and the interchain interaction are reduced. In the spin-glass phase (xx=1.5) and nearly disordered phase (xx=1.67) the magnetic excitations are much broadened in energy and QQ. It is suggested that the spin-glass phase originates from the antiferromagnetic clusters, which are caused by the hole disproportionation.Comment: 8 pages, submitted to Phys. Rev.

    Solving the interior problem of computed tomography using a priori knowledge

    Get PDF
    A case of incomplete tomographic data for a compactly supported attenuation function is studied. When the attenuation function is a priori known in a subregion, we show that a reduced set of measurements are enough to uniquely determine the attenuation function over all the space. Furthermore, we found stability estimates showing that reconstruction can be stable near the region where the attenuation is known. These estimates also suggest that reconstruction stability collapses quickly when approaching the set of points that is viewed under less than 180°. This paper may be seen as a continuation of the work \u27Truncated Hilbert transform and image reconstruction from limited tomographic data\u27 (Defrise et al 2006 Inverse Problems 22 1037). This continuation tackles new cases of incomplete data that could be of interest in applications of computed tomography

    Thermomagnetic Power and Figure of Merit for Spin-1/2 Heisenberg Chain

    Full text link
    Transport properties in the presence of magnetic fields are numerically studied for the spin-1/2 Heisenberg XXZ chain. The breakdown of the spin-reversal symmetry due to the magnetic field induces the magnetothermal effect. In analogy with the thermoelectric effect in electron systems, the thermomagnetic power (magnetic Seebeck coefficient) is provided, and is numerically evaluated by the exact diagonalization for wide ranges of temperatures and various magnetic fields. For the antiferromagnetic regime, we find the magnetic Seebeck coefficient changes sign at certain temperatures, which is interpreted as an effect of strong correlations. We also compute the thermomagnetic figure of merit determining the efficiency of the thermomagnetic devices for cooling or power generation.Comment: 8 page
    • 

    corecore