135 research outputs found

    Overexpression of aurora B kinase (AURKB) in primary non-small cell lung carcinoma is frequent, generally driven from one allele, and correlates with the level of genetic instability

    Get PDF
    Aurora kinases are key regulators of chromosome segregation during mitosis. We have previously shown by microarray analysis of primary lung carcinomas and matched normal tissue that AURKB (22 out of 37) and AURKA (15 out of 37) transcripts are frequently over-represented in these tumours. We now confirm these observations in a second series of 44 carcinomas and also show that aurora B kinase protein levels are raised in the tumours compared to normal tissue. Elevated levels of expression in tumours are not a consequence of high-level amplification of the AURKB gene. Using a coding sequence polymorphism we show that in most cases (seven out of nine) tumour expression is predominantly driven from one AURKB allele. Given the function of aurora B kinase, we examined whether there was an association between expression levels and genetic instability. We defined two groups of high and low AURKB expression. Using a panel of 10 microsatellite markers, we found that the group showing the higher level of expression had a higher frequency of allelic imbalance (P=0.0012). Analysis of a number of other genes that are strongly and specifically expressed in tumour over normal lung, including SERPINB5, TERT and PRAME, showed marked allelic expression imbalances in the tumour tissue in the context of balanced or only marginally imbalanced relative allelic copy numbers. Our data support a model of early carcinogenesis wherein defects in the process of inactivation of lung stem-cell associated genes during differentiation, contributes to the development of carcinogenesis

    Linkage studies in a Li-Fraumeni family with increased expression of p53 protein but no germline mutation in p53.

    Get PDF
    We report a family with the Li-Fraumeni syndrome (LFS) in whom we have been unable to detect a mutation in the coding sequence of the p53 gene. Analysis of linkage to three polymorphic markers within p53 enabled direct involvement of p53 to be excluded. This is the first example of a LFS family in whom exclusion of p53 has been possible. Four affected members of the family with sarcoma or premenopausal breast cancer showed increased expression of p53 protein in their normal tissues as detected by immunohistochemistry. It therefore appears that the LFS phenotype has been conferred by an aberrant gene, showing a dominant pattern of inheritance, which may be acting to compromise normal p53 function rather than by a mutation in p53 itself. In order to try to determine the chromosomal location of this putative gene, we have carried out studies of linkage to candidate loci. By these means we have excluded involvement of Rb1 and BRCA1 on chromosomes 13q and 17q respectively. The MDM2 oncogene on chromosome 12q was considered to be the prime candidate as MDM2 is amplified in sarcomas and the MDM2 product binds to p53. Furthermore, p53 mutation and amplification of MDM2 have been shown to be mutually exclusive events in tumour development. Linkage analysis to two polymorphic markers within MDM2 yielded a three-point LOD score of -5.4 at a recombination fraction theta equal to zero. Therefore MDM2 could be excluded. It is possible that the gene which is responsible for cancer susceptibility in this family, possibly via interaction with p53, will be important in the histogenesis of breast cancer in general. We are now carrying out further studies to locate and identify this gene

    Clinical and functional characterisation of the combined respiratory chain defect in two sisters due to autosomal recessive mutations in MTFMT.

    Get PDF
    Exome sequencing identified compound heterozygous mutations in the recently discovered mitochondrial methionyl-tRNA formyltransferase (MTFMT) gene in two sisters with mild Leigh syndrome and combined respiratory chain deficiency. The mutations lead to undetectable levels of the MTFMT protein. Blue native polyacrylamide gel electrophoresis showed decreased complexes I and IV, and additional products stained with complex V antibodies, however the overall steady state level of mt-tRNA(Met) was normal. Our data illustrate that exome sequencing is an excellent diagnostic tool, and its value in clinical medicine is enormous, however it can only be optimally exploited if combined with detailed phenotyping and functional studies

    Universal heteroplasmy of human mitochondrial DNA.

    Get PDF
    Mammalian cells contain thousands of copies of mitochondrial DNA (mtDNA). At birth, these are thought to be identical in most humans. Here, we use long read length ultra-deep resequencing-by-synthesis to interrogate regions of the mtDNA genome from related and unrelated individuals at unprecedented resolution. We show that very low-level heteroplasmic variance is present in all tested healthy individuals, and is likely to be due to both inherited and somatic single base substitutions. Using this approach, we demonstrate an increase in mtDNA mutations in the skeletal muscle of patients with a proofreading-deficient mtDNA polymerase γ due to POLG mutations. In contrast, we show that OPA1 mutations, which indirectly affect mtDNA maintenance, do not increase point mutation load. The demonstration of universal mtDNA heteroplasmy has fundamental implications for our understanding of mtDNA inheritance and evolution. Ostensibly de novo somatic mtDNA mutations, seen in mtDNA maintenance disorders and neurodegenerative disease and aging, will partly be due to the clonal expansion of low-level inherited variants

    Accurate mitochondrial DNA sequencing using off-target reads provides a single test to identify pathogenic point mutations.

    Get PDF
    PURPOSE: Mitochondrial disorders are a common cause of inherited metabolic disease and can be due to mutations affecting mitochondrial DNA or nuclear DNA. The current diagnostic approach involves the targeted resequencing of mitochondrial DNA and candidate nuclear genes, usually proceeds step by step, and is time consuming and costly. Recent evidence suggests that variations in mitochondrial DNA sequence can be obtained from whole-exome sequence data, raising the possibility of a comprehensive single diagnostic test to detect pathogenic point mutations. METHODS: We compared the mitochondrial DNA sequence derived from off-target exome reads with conventional mitochondrial DNA Sanger sequencing in 46 subjects. RESULTS: Mitochondrial DNA sequences can be reliably obtained using three different whole-exome sequence capture kits. Coverage correlates with the relative amount of mitochondrial DNA in the original genomic DNA sample, heteroplasmy levels can be determined using variant and total read depths, and-providing there is a minimum read depth of 20-fold-rare sequencing errors occur at a rate similar to that observed with conventional Sanger sequencing. CONCLUSION: This offers the prospect of using whole-exome sequence in a diagnostic setting to screen not only all protein coding nuclear genes but also all mitochondrial DNA genes for pathogenic mutations. Off-target mitochondrial DNA reads can also be used to assess quality control and maternal ancestry, inform on ethnic origin, and allow genetic disease association studies not previously anticipated with existing whole-exome data sets

    Exome sequencing in undiagnosed inherited and sporadic ataxias.

    Get PDF
    Inherited ataxias are clinically and genetically heterogeneous, and a molecular diagnosis is not possible in most patients. Having excluded common sporadic, inherited and metabolic causes, we used an unbiased whole exome sequencing approach in 35 affected individuals, from 22 randomly selected families of white European descent. We defined the likely molecular diagnosis in 14 of 22 families (64%). This revealed de novo dominant mutations, validated disease genes previously described in isolated families, and broadened the clinical phenotype of known disease genes. The diagnostic yield was the same in both young and older-onset patients, including sporadic cases. We have demonstrated the impact of exome sequencing in a group of patients notoriously difficult to diagnose genetically. This has important implications for genetic counselling and diagnostic service provision

    Respiratory chain deficiency in nonmitochondrial disease.

    Get PDF
    OBJECTIVE: In this study, we report 5 patients with heterogeneous phenotypes and biochemical evidence of respiratory chain (RC) deficiency; however, the molecular diagnosis is not mitochondrial disease. METHODS: The reported patients were identified from a cohort of 60 patients in whom RC enzyme deficiency suggested mitochondrial disease and underwent whole-exome sequencing. RESULTS: Five patients had disease-causing variants in nonmitochondrial disease genes ORAI1, CAPN3, COLQ, EXOSC8, and ANO10, which would have been missed on targeted next-generation panels or on MitoExome analysis. CONCLUSIONS: Our data demonstrate that RC abnormalities may be secondary to various cellular processes, including calcium metabolism, neuromuscular transmission, and abnormal messenger RNA degradation

    Behr's Syndrome is Typically Associated with Disturbed Mitochondrial Translation and Mutations in the C12orf65 Gene.

    Get PDF
    BACKGROUND: Behr's syndrome is a classical phenotypic description of childhood-onset optic atrophy combined with various neurological symptoms, including ophthalmoparesis, nystagmus, spastic paraparesis, ataxia, peripheral neuropathy and learning difficulties. OBJECTIVE: Here we describe 4 patients with the classical Behr's syndrome phenotype from 3 unrelated families who carry homozygous nonsense mutations in the C12orf65 gene encoding a protein involved in mitochondrial translation. METHODS: Whole exome sequencing was performed in genomic DNA and oxygen consumption was measured in patient cell lines. RESULTS: We detected 2 different homozygous C12orf65 nonsense mutations in 4 patients with a homogeneous clinical presentation matching the historical description of Behr's syndrome. The first symptom in all patients was childhood-onset optic atrophy, followed by spastic paraparesis, distal weakness, motor neuropathy and ophthalmoparesis. CONCLUSIONS: We think that C12orf65 mutations are more frequent than previously suggested and screening of this gene should be considered not only in patients with mitochondrial respiratory chain deficiencies, but also in inherited peripheral neuropathies, spastic paraplegias and ataxias, especially with pre-existing optic atrophy
    corecore