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Exome sequencing in undiagnosed inherited
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Inherited ataxias are clinically and genetically heterogeneous, and a molecular diagnosis is not possible in most patients. Having

excluded common sporadic, inherited and metabolic causes, we used an unbiased whole exome sequencing approach in 35 affected

individuals, from 22 randomly selected families of white European descent. We defined the likely molecular diagnosis in 14 of 22

families (64%). This revealed de novo dominant mutations, validated disease genes previously described in isolated families, and

broadened the clinical phenotype of known disease genes. The diagnostic yield was the same in both young and older-onset

patients, including sporadic cases. We have demonstrated the impact of exome sequencing in a group of patients notoriously

difficult to diagnose genetically. This has important implications for genetic counselling and diagnostic service provision.

1 Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Central Parkway,
Newcastle upon Tyne, NE1 3BZ, UK

2 Department of Clinical Biochemistry, Royal Victoria Infirmary, Newcastle upon Tyne Foundation Hospitals NHS Trust,
Newcastle upon Tyne, NE1 4LP, UK

3 Department of Paediatric Neurology, Royal Victoria Infirmary, Newcastle upon Tyne Foundation Hospitals NHS Trust,
Newcastle upon Tyne, NE1 4LP, UK

Correspondence to: Patrick F. Chinnery,

Institute of Genetic Medicine,

Newcastle University, Central, Parkway,

Newcastle upon Tyne,

NE1 3BZ, UK

E-mail: patrick.chinnery@ncl.ac.uk

Keywords: ataxia; whole exome sequencing

Introduction
The inherited ataxias are clinically and genetically hetero-

geneous, presenting at any age, and usually without

features pointing to a specific molecular diagnosis

(Anheim et al., 2010; Jayadev and Bird, 2013). Defining

the genetic aetiology is important because clinically similar

disorders can have different recurrence risks, and in some

instances there are treatment implications (Jayadev and

Bird, 2013).

The first step in investigating patients is the exclusion of

structural, toxic and inflammatory disorders. Following

this, testing for the more common trinucleotide repeat neu-

rometabolic disorders provides a diagnosis in up to �60%

of familial cases. After excluding the more common genetic

causes, over 40 different loci are implicated. Subsequent
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investigation usually proceeds on a gene-by-gene basis,

which takes considerable time, and is expensive. Many pa-

tients do not receive a genetic diagnosis for many years, if

at all, limiting genetic counselling and prenatal diagnosis.

Targeted next-generation sequencing panels have been

shown to increase the diagnostic yield in suspected in-

herited ataxia, particularly in those with adolescent onset

and a family history (Hoischen et al., 2010). However,

after excluding common forms of spinocerebellar ataxia

(SCA) the overall detection rate remains 520% in routine

clinical practice (Nemeth et al., 2013). This may be due to

the limited portfolio of genes included on custom-designed

platforms (Nemeth et al., 2013), but the clinical overlap of

different neurogenetic syndromes presents a further chal-

lenge. In some patients, ataxia may develop in conjunction

with spastic paraplegia or a neuropathy, and the initial

clinical presentation may mislead the clinician to select

the wrong multi-gene panel. Not based on any prior as-

sumption about the underlying gene defect, whole exome

sequencing provides a potential solution to these problems.

Here we set out to determine the impact of whole exome

sequencing in patients with suspected inherited ataxia who

did not have one of the more common forms diagnosed on

routine genetic testing.

Materials and methods

Inclusion criteria

We studied 35 individuals with unexplained ataxia identified
at random through routine referrals to the regional neuroge-
netics service at Newcastle upon Tyne, England. The clinic
serves a region of �3 million in the north of England. To
ensure that the cohort reflected standard clinical practice, we
did not select cases based on age, gender or the presence of a
family history. Prior to inclusion, all had routine clinical in-
vestigations to exclude treatable causes of acquired ataxia,
including brain MRI and CSF examination with oligoclonal
band analysis. All had negative genetic testing for SCA1, 2,
3, 6, 7, 17 (now known as ATXN1, ATXN2, CACNA1A,
ATXN7, and TBP, respectively), DRPLA (now known as
ATN1), FA (now known as FXN) and FMR1 in adult
males, which are positive in 17% of routine referrals to our
clinic.

Demographic and clinical
characteristics

The 35 affected individuals were from 22 families of white
European descent. The mean age was 25 years [standard de-
viation (SD) 14, range 3–57 years] at the time of the study,
and 14 were male. Detailed clinical features and the results of
clinical investigations are shown in Table 1 and the
Supplementary material. Twenty-five of 35 individuals had a
family history, suggestive of dominant inheritance in 11/25,
and autosomal recessive in 14/25. There was no known
consanguinity.

Molecular genetics and
bioinformatics

Blood genomic DNA was fragmented, exome enriched and
sequenced (Illumina TruSeqTM 62 Mb and HiSeq 2000,
100 bp paired-end reads). Coverage data are summarized in
Supplementary Tables 1 and 2. In-house bioinformatic analysis
included alignment to UCSC hg19, using Burrows-Wheeler
Aligner; duplicate removal (Picard v1.85) and variant detection
(Varscan v2.2) (Koboldt et al., 2009), Dindel v1.01 (Albers
et al., 2011). Further analysis was performed on variants
with a minor allele frequency 50.01 in several databases:
dbSNP137, 1000 Genomes (April 2012 data release), the
National Heart, Lung and Blood Institute (NIH) Exome
Sequencing Project (ESP) 6500 exomes, and 286 unrelated
in-house controls. Rare homozygous and compound heterozy-
gous variants were defined, and protein altering and/or puta-
tive ‘disease causing’ mutations, along with their functional
annotation, were identified using ANNOVAR (Wang et al.,
2010). Putative pathogenic variants were confirmed by
Sanger sequencing using custom-designed primers (http://
frodo.wi.mit.edu) (ABI BigDye� v3.1 3130xl Genetic
Analyzer, Life Technologies). Comparative genomic hybridiza-
tion was performed in presumed recessive cases where a single
likely pathogenic allele was found in a strong candidate gene.
Quantitative pyrosequencing was used to determine the pro-
portion of mutated alleles in given tissues (Pyromark v2.0,
Qiagen; Supplementary Table 3).

Variant classification

Variants were defined using a priori criteria: (i) confirmed
pathogenic—a variant previously shown to be pathogenic, or
in a known ataxia disease gene where the variant was pre-
dicted to affect protein structure or function, and segregated
with at least one additional affected family member; (ii) pos-
sible pathogenic variants—variant in a known ataxia gene and
predicted to affect protein function but not fulfilling all of the
above criteria; and (iii) variants of uncertain significance or no
candidate variants found.

Results
Confirmed pathogenic variants were found in 9/22 pro-

bands (41%) (Table 1 and Supplementary Table 4).

Three families had novel compound SACS mutations,

each found in two affected siblings, including a full deletion

of SACS detected from exome coverage (Pyle et al., 2012,

2013). Known compound heterozygous SPG7 mutations

were found in three affected individuals from one family

with no spasticity (Casari et al., 1998). Two siblings pre-

senting with adult-onset ataxia had compound heterozy-

gous mutations in NPC1, confirmed by subsequent

oxysterol analysis (Supplementary Table 5) (Carstea et al.,

1997). Likely de novo dominant TUBB4A mutations were

found in two families (Simons et al., 2013). One family

showed varying degrees of mosaicism in the mildly affected

mother and heterozygosity in the severely affected offspring

(Fig. 1 and Supplementary Table 6). A de novo dominant
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SLC1A3 mutation segregated with ataxia in three mem-

bers of a family (de Vries et al., 2009). Finally, a dom-

inant KCNC3 mutation previously described in a large

Filipino kindred and three European index cases (Waters

et al., 2006; Subramony et al., 2013) segregated with

ataxia in four members of a three-generation autosomal

dominant pedigree.

Possible pathogenic variants were identified in 5/22

probands (23%), including compound heterozygous

FASTKD2 variants (c.149A4G:p.Lys50Arg, which is

highly conserved; and c.-66A4G predicted to affect

exon 1 splicing) (Ghezzi et al., 2008). One proband

had de novo compound heterozygous mutations in

ZFYVE26 (SPG15) (Fig. 2) (Hanein et al., 2008). A pre-

dicted splice site mutation, c.805-2A4G (Supplementary

Fig. 1), was detected in three members of an autosomal

dominant pedigree in the previously described gene

ZFYVE27 (Mannan et al., 2006). Previously described

compound heterozygous WFS1 mutations (p.Lys193Gln

and p.Arg456His) were identified in one family (Cryns

et al., 2003). Detailed clinical data and the results of

segregation analyses are included in the Supplementary

material.

We were unable to confidently identify likely candi-

dates in 10/22 probands but present potential candidate

genes that may be recognized by others.

Discussion
In this study whole exome sequencing identified con-

firmed pathogenic variants in 9/22 families with unex-

plained ataxia, with a similar diagnostic yield in both

young (520 years of age) 4/9 (44%) and older-onset

(420 years of age) 5/9 (56%) patients. Likely pathogenic

variants were found in 5/22 probands, again with a simi-

lar diagnostic yield in both young (520 years of age) 2/5

(40%) and older-onset (420 years of age) 3/5 (60%)

cases. The likely genetic cause was identified in 2/4

(50%) of adult-onset sporadic cases, and one gene was

implicated in 3/6 (50%) of early-onset presumed reces-

sive cases. Taken together these account for the likely

molecular diagnosis in 64% of our families. These find-

ings contrast with those of a targeted next generation

sequencing approach, which identified the cause in

18% of patients in a similar study cohort (Nemeth

et al., 2013). Greater genome coverage provides the

likely explanation for the higher diagnostic yield reported

here, underscored by our observation that some of the

definite mutations were found in genes known to cause

ataxia, but not always considered ‘ataxia genes’, and

thus not included on some multi-gene panels (Nemeth

et al., 2013). The extra coverage had the greatest

impact on the diagnosis of adult-onset patients with re-

cessive ataxia—a disorder generally considered to be of

childhood onset. Our findings are endorsed by a recent

study in children (Sawyer et al., 2014), but unexpectedly
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Figure 1 De novo TUBB4A mutation in Patients P11, 12 and 13. Top: Segregation of TUBB4A c.900C4A (p.Met300Ile) mutation in

Patient P13 (mother), and her two daughters. Confirmatory Sanger sequencing and pyrosequencing in different tissues from the mother showing

tissue mosaicism in the mother for the presumed de novo dominant allele. Middle: Pyrosequencing results of this mutation in different tissues.

Bottom: Brain MRI from Patient P13, the mother (A and B) and daughter Patient P12 (C and D). (A and B) T2 and T1 images showing generalized

atrophy and periventricular high signal. (C and D) T2 images showing marked cerebellar atrophy and diffuse hypomyelination.
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show the potential impact of exome sequencing in patients

with suspected inherited ataxia presenting at any age.

With 11 genes implicated in 14 families, and no recurrent

mutations in the same gene, our observations reaffirm the

known genetic heterogeneity of inherited ataxia in an

outbred European population. Similar genetic heterogeneity

was also noted in 46 patients with sporadic and familial

cerebellar ataxia studied with exome sequencing (Fogel

at al., 2014). Of the 16 patients with a confirmed diagno-

sis, only one of the disease genes identified by Fogel et al.

(2014) was also identified in our patients (SPG7), and only

two of the genes implicated in the remainder (WFS1,

ZFYVE26) were also implicated in the patients we describe

here (Table 1). In both our study and the work of Fogel

et al., (2014), the non-targeted exome sequencing approach

increased the likelihood of detecting causal variants, par-

ticularly those in newly described disease genes, or excep-

tionally rare disease genes not found on targeted capture

arrays. Although we did not directly compare exome

sequencing to an ‘ataxia multi-gene panel’, our results

show that exome sequencing is highly likely to have a

greater diagnostic yield. In one of the largest panels pro-

duced to date, Nemeth et al. (2013) studied 117 known

and putative ataxia genes. Eighty-nine per cent of the

coding sequence of these genes was covered 420-fold

using our exome sequencing approach, so it is highly

likely that we would have detected the mutations found

in their cohort. On the other hand, only 29% of the disease

genes that we identified were included in the multi-gene

panel of Nemeth et al. (2013), including genes not previ-

ously considered to be ‘ataxia genes’, such as SPG7.

Moreover, there may be limited overlap between different

multi-gene panels, which are defined by specific labora-

tories reflecting ataxia in a given population, and based

on ataxia genes known at that time. Sequencing the

entire exome is likely to address these concerns. Given

that exome sequencing costs are approximately the same

as a single candidate gene test in most diagnostic labora-

tories, exome sequencing provides a rapid and cost effective

means of reaching a diagnosis in a group of patients that

have been notoriously difficult to diagnose at the molecular

level.

A further advantage of the exome-based approach is the

identification of known disease genes in a different clinical

context, broadening the phenotype. With the potential for

false positives, we also sought corroborative phenotypic or

biochemical data when we detected a variant in an unex-

pected gene. This approach confirmed the diagnosis of

Niemann Pick type C in two siblings with adult-onset

ataxia, but lacking the characteristic eye movement dis-

order seen in childhood (Patients P15 and P16), and also

prompted careful review of neuroimaging, which confirmed

the thin corpus callosum characteristic of ZFYVE26/SPG15

(Patient P19, Fig. 2) (Goizet et al., 2009). In these patients,

exome sequencing highlighted likely causal variants, which

were substantiated by subsequent clinical and biochemical

studies. On the other hand, we observed an adult-onset for

ataxic disorders generally considered to present in child-

hood (SACS), and atypical clinical presentations, such as

sacsinopathy presenting with a Charcot–Marie–Tooth

phenotype. Likewise, although ataxia has been described

as a presenting feature of SPG7, the absence of spasticity

was thought to reduce the likelihood of a positive SPG7

result, moving this specific gene test down the priority list.

These observations demonstrate the importance of iterating

between the clinical and genetic data to maximize the

potential of large-scale sequencing, not only providing a

diagnosis for a specific family, but also advancing our

understanding of the phenotypic spectrum of specific

disease genes.

Figure 2 T1 axial (A) and T2 sagittal (B) MRI in Patient P19. The MRI shows global cerebral atrophy with relative sparing of the occipital

lobes and cerebellum, and marked atrophy of the corpus callosum previously described in patients with mutations in ZFYVE26 (SPG15)

(Goizet et al., 2009).
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We did not observe many of the rare autosomal recessive

forms of ataxia observed in a similar sized UK cohort

(Nemeth et al., 2013), reflecting the genetic heterogeneity

of inherited ataxia. We suspect that the extreme genetic

heterogeneity has prevented us from identifying any recur-

rent novel ataxia genes with any degree of confidence.

However, publishing our findings will hopefully allow

others to refer to the variant data in our undiagnosed

cases, and thus reach a final conclusion.

The use of exome sequencing in neurogenetic disorders

is endorsed by recent findings in 24 cases (15 families)

with undiagnosed suspected inherited polyneuropathies

(Charcot–Marie–Tooth disease), where pathogenic muta-

tions were found in five probands and possible causal mu-

tations in three (Klein et al., 2014), giving a total yield of

53%. An even higher yield may be possible for presumed

autosomal recessive disorders when mother-father-affected

child trios are sequenced, given the recent findings in 55

families with hereditary spastic paraplegia where the likely

diagnosis was defined in 75% (Novarino et al., 2014).

However, identifying trios is challenging for adult-onset

cases where parental samples are not readily available,

and the advantage of trios is not so apparent for autosomal

dominant disorders, which account for 44% of ataxia

patients we describe here.

Although the whole exome approach provides a major

advance in likely diagnostic yield in suspected inherited

ataxia, the approach may uncover unexpected findings,

such as mutations in genes known to cause familial

cancer syndromes, or a different neurodegenerative disease

such as familial Alzheimer’s disease. These incidental find-

ings are rare, and were not discovered in this study, but

must be considered when taking informed consent for

exome studies (Bamshad et al., 2011). It should also be

borne in mind that our study was based on only 22 pro-

bands from one geographic region. These patients were

from a largely outbred stable population of white

European extraction, and the spectrum of different dis-

ease-causing alleles and genes may differ in other parts of

the world, particularly if there is evidence of a founder

effect. In these contexts a more focused sequencing ap-

proach may be more appropriate. Our study also had

wide entry criteria, reflecting routine clinical practice.

Although it is reassuring that exome sequencing appeared

to be effective across this clinical spectrum, larger studies

may show that it is more or less effective in specific clinical

subgroups. Finally, we were unable to identify the likely

genetic basis of the ataxia in 36% families. Exome sequen-

cing the parents may reveal the discordant heterozygous

variant responsible for the disorder that is otherwise chal-

lenging to identify. This is particularly relevant for congeni-

tal or childhood-onset ataxias (Ohba et al., 2013), but

many de novo dominant mutations can also cause adult-

onset ataxia, as shown here (Fig. 1). It remains possible

that some of the later-onset cases are not primarily genet-

ically determined; however, given the relevant family his-

tory in most, there are also likely to be technical

explanations. Exome capture does not provide complete

coverage of all coding regions of the genome, particularly

those with GC-rich regions. In addition, large genomic

rearrangements and trinucleotide repeat sequences are not

reliably detected from exome-capture data. It is therefore

possible that some of the undiagnosed cases have patho-

genic trinucleotide expansions not routinely tested in our

region, including SCA10, 12 and 31, although these are

very rare in our experience. Finally, it is likely that some

causal variants will reside within non-coding regulatory

regions. Some of these issues will be resolved by whole

genome sequencing, although not without substantial

additional cost and bioinformatics complexity.
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