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Inherited ataxias are clinically and genetically heterogeneous, and a molecular diagnosis is not possible in most patients. Having

excluded common sporadic, inherited and metabolic causes, we used an unbiased whole exome sequencing approach in 35 affected

individuals, from 22 randomly selected families of white European descent. We defined the likely molecular diagnosis in 14 of 22
families (64%). This revealed de novo dominant mutations, validated disease genes previously described in isolated families, and

broadened the clinical phenotype of known disease genes. The diagnostic yield was the same in both young and older-onset

patients, including sporadic cases. We have demonstrated the impact of exome sequencing in a group of patients notoriously

difficult to diagnose genetically. This has important implications for genetic counselling and diagnostic service provision.
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Introduction

The inherited ataxias are clinically and genetically hetero-
geneous, presenting at any age, and usually without
features pointing to a specific molecular diagnosis
(Anheim et al., 2010; Jayadev and Bird, 2013). Defining
the genetic aetiology is important because clinically similar
disorders can have different recurrence risks, and in some

instances there are treatment implications (Jayadev and
Bird, 2013).

The first step in investigating patients is the exclusion of
structural, toxic and inflammatory disorders. Following
this, testing for the more common trinucleotide repeat neu-
rometabolic disorders provides a diagnosis in up to ~60%
of familial cases. After excluding the more common genetic
causes, over 40 different loci are implicated. Subsequent
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investigation usually proceeds on a gene-by-gene basis,
which takes considerable time, and is expensive. Many pa-
tients do not receive a genetic diagnosis for many years, if
at all, limiting genetic counselling and prenatal diagnosis.

Targeted next-generation sequencing panels have been
shown to increase the diagnostic yield in suspected in-
herited ataxia, particularly in those with adolescent onset
and a family history (Hoischen et al., 2010). However,
after excluding common forms of spinocerebellar ataxia
(SCA) the overall detection rate remains <20% in routine
clinical practice (Nemeth et al., 2013). This may be due to
the limited portfolio of genes included on custom-designed
platforms (Nemeth et al., 2013), but the clinical overlap of
different neurogenetic syndromes presents a further chal-
lenge. In some patients, ataxia may develop in conjunction
with spastic paraplegia or a neuropathy, and the initial
clinical presentation may mislead the clinician to select
the wrong multi-gene panel. Not based on any prior as-
sumption about the underlying gene defect, whole exome
sequencing provides a potential solution to these problems.
Here we set out to determine the impact of whole exome
sequencing in patients with suspected inherited ataxia who
did not have one of the more common forms diagnosed on
routine genetic testing.

Materials and methods

Inclusion criteria

We studied 35 individuals with unexplained ataxia identified
at random through routine referrals to the regional neuroge-
netics service at Newcastle upon Tyne, England. The clinic
serves a region of ~3 million in the north of England. To
ensure that the cohort reflected standard clinical practice, we
did not select cases based on age, gender or the presence of a
family history. Prior to inclusion, all had routine clinical in-
vestigations to exclude treatable causes of acquired ataxia,
including brain MRI and CSF examination with oligoclonal
band analysis. All had negative genetic testing for SCA1, 2,
3, 6, 7, 17 (now known as ATXNI1, ATXN2, CACNAIA,
ATXN7, and TBP, respectively), DRPLA (now known as
ATN1), FA (now known as FXN) and FMR1 in adult
males, which are positive in 17% of routine referrals to our
clinic.

Demographic and clinical
characteristics

The 35 affected individuals were from 22 families of white
European descent. The mean age was 25 years [standard de-
viation (SD) 14, range 3-57 years] at the time of the study,
and 14 were male. Detailed clinical features and the results of
clinical investigations are shown in Table 1 and the
Supplementary material. Twenty-five of 35 individuals had a
family history, suggestive of dominant inheritance in 11/235,
and autosomal recessive in 14/25. There was no known
consanguinity.
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Molecular genetics and
bioinformatics

Blood genomic DNA was fragmented, exome enriched and
sequenced (Illumina TruSeq™ 62 Mb and HiSeq 2000,
100 bp paired-end reads). Coverage data are summarized in
Supplementary Tables 1 and 2. In-house bioinformatic analysis
included alignment to UCSC hg19, using Burrows-Wheeler
Aligner; duplicate removal (Picard v1.85) and variant detection
(Varscan v2.2) (Koboldt et al., 2009), Dindel v1.01 (Albers
et al., 2011). Further analysis was performed on variants
with a minor allele frequency <0.01 in several databases:
dbSNP137, 1000 Genomes (April 2012 data release), the
National Heart, Lung and Blood Institute (NIH) Exome
Sequencing Project (ESP) 6500 exomes, and 286 unrelated
in-house controls. Rare homozygous and compound heterozy-
gous variants were defined, and protein altering and/or puta-
tive ‘disease causing’ mutations, along with their functional
annotation, were identified using ANNOVAR (Wang et al.,
2010). Putative pathogenic variants were confirmed by
Sanger sequencing using custom-designed primers (http:/
frodo.wi.mit.edu) (ABI BigDye® v3.1 3130xl Genetic
Analyzer, Life Technologies). Comparative genomic hybridiza-
tion was performed in presumed recessive cases where a single
likely pathogenic allele was found in a strong candidate gene.
Quantitative pyrosequencing was used to determine the pro-
portion of mutated alleles in given tissues (Pyromark v2.0,
Qiagen; Supplementary Table 3).

Variant classification

Variants were defined using a priori criteria: (i) confirmed
pathogenic—a variant previously shown to be pathogenic, or
in a known ataxia disease gene where the variant was pre-
dicted to affect protein structure or function, and segregated
with at least one additional affected family member; (ii) pos-
sible pathogenic variants—variant in a known ataxia gene and
predicted to affect protein function but not fulfilling all of the
above criteria; and (iii) variants of uncertain significance or no
candidate variants found.

Results

Confirmed pathogenic variants were found in 9/22 pro-
bands (41%) (Table 1 and Supplementary Table 4).
Three families had novel compound SACS mutations,
each found in two affected siblings, including a full deletion
of SACS detected from exome coverage (Pyle et al., 2012,
2013). Known compound heterozygous SPG7 mutations
were found in three affected individuals from one family
with no spasticity (Casari et al., 1998). Two siblings pre-
senting with adult-onset ataxia had compound heterozy-
gous mutations in NPCI, confirmed by subsequent
oxysterol analysis (Supplementary Table 5) (Carstea et al.,
1997). Likely de novo dominant TUBB4A mutations were
found in two families (Simons et al., 2013). One family
showed varying degrees of mosaicism in the mildly affected
mother and heterozygosity in the severely affected offspring
(Fig. 1 and Supplementary Table 6). A de novo dominant
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Figure | De novo TUBB4A mutation in Patients P11, 12 and 13. Top: Segregation of TUBB4A c.900C > A (p.Met300lle) mutation in
Patient P13 (mother), and her two daughters. Confirmatory Sanger sequencing and pyrosequencing in different tissues from the mother showing
tissue mosaicism in the mother for the presumed de novo dominant allele. Middle: Pyrosequencing results of this mutation in different tissues.
Bottom: Brain MRI from Patient P13, the mother (A and B) and daughter Patient P12 (C and D). (A and B) T, and T, images showing generalized

atrophy and periventricular high signal. (C and D) T, images showing marked cerebellar atrophy and diffuse hypomyelination.
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Figure 2 T, axial (A) and T, sagittal (B) MRI in Patient P19. The MRI shows global cerebral atrophy with relative sparing of the occipital
lobes and cerebellum, and marked atrophy of the corpus callosum previously described in patients with mutations in ZFYVE26 (SPGI5)

(Goizet et al., 2009).

show the potential impact of exome sequencing in patients
with suspected inherited ataxia presenting at any age.
With 11 genes implicated in 14 families, and no recurrent
mutations in the same gene, our observations reaffirm the
known genetic heterogeneity of inherited ataxia in an
outbred European population. Similar genetic heterogeneity
was also noted in 46 patients with sporadic and familial
cerebellar ataxia studied with exome sequencing (Fogel
at al., 2014). Of the 16 patients with a confirmed diagno-
sis, only one of the disease genes identified by Fogel er al.
(2014) was also identified in our patients (SPG7), and only
two of the genes implicated in the remainder (WFS1,
ZFYVE26) were also implicated in the patients we describe
here (Table 1). In both our study and the work of Fogel
et al., (2014), the non-targeted exome sequencing approach
increased the likelihood of detecting causal variants, par-
ticularly those in newly described disease genes, or excep-
tionally rare disease genes not found on targeted capture
arrays. Although we did not directly compare exome
sequencing to an ‘ataxia multi-gene panel’, our results
show that exome sequencing is highly likely to have a
greater diagnostic yield. In one of the largest panels pro-
duced to date, Nemeth et al. (2013) studied 117 known
and putative ataxia genes. Eighty-nine per cent of the
coding sequence of these genes was covered >20-fold
using our exome sequencing approach, so it is highly
likely that we would have detected the mutations found
in their cohort. On the other hand, only 29% of the disease
genes that we identified were included in the multi-gene
panel of Nemeth et al. (2013), including genes not previ-
ously considered to be ‘ataxia genes’, such as SPG7.
Moreover, there may be limited overlap between different
multi-gene panels, which are defined by specific labora-
tories reflecting ataxia in a given population, and based
on ataxia genes known at that time. Sequencing the

entire exome is likely to address these concerns. Given
that exome sequencing costs are approximately the same
as a single candidate gene test in most diagnostic labora-
tories, exome sequencing provides a rapid and cost effective
means of reaching a diagnosis in a group of patients that
have been notoriously difficult to diagnose at the molecular
level.

A further advantage of the exome-based approach is the
identification of known disease genes in a different clinical
context, broadening the phenotype. With the potential for
false positives, we also sought corroborative phenotypic or
biochemical data when we detected a variant in an unex-
pected gene. This approach confirmed the diagnosis of
Niemann Pick type C in two siblings with adult-onset
ataxia, but lacking the characteristic eye movement dis-
order seen in childhood (Patients P15 and P16), and also
prompted careful review of neuroimaging, which confirmed
the thin corpus callosum characteristic of ZFYVE26/SPG15
(Patient P19, Fig. 2) (Goizet et al., 2009). In these patients,
exome sequencing highlighted likely causal variants, which
were substantiated by subsequent clinical and biochemical
studies. On the other hand, we observed an adult-onset for
ataxic disorders generally considered to present in child-
hood (SACS), and atypical clinical presentations, such as
sacsinopathy presenting with a Charcot—-Marie-Tooth
phenotype. Likewise, although ataxia has been described
as a presenting feature of SPG7, the absence of spasticity
was thought to reduce the likelihood of a positive SPG7
result, moving this specific gene test down the priority list.
These observations demonstrate the importance of iterating
between the clinical and genetic data to maximize the
potential of large-scale sequencing, not only providing a
diagnosis for a specific family, but also advancing our
understanding of the phenotypic spectrum of specific
disease genes.
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We did not observe many of the rare autosomal recessive
forms of ataxia observed in a similar sized UK cohort
(Nemeth et al., 2013), reflecting the genetic heterogeneity
of inherited ataxia. We suspect that the extreme genetic
heterogeneity has prevented us from identifying any recur-
rent novel ataxia genes with any degree of confidence.
However, publishing our findings will hopefully allow
others to refer to the variant data in our undiagnosed
cases, and thus reach a final conclusion.

The use of exome sequencing in neurogenetic disorders
is endorsed by recent findings in 24 cases (15 families)
with undiagnosed suspected inherited polyneuropathies
(Charcot-Marie-Tooth disease), where pathogenic muta-
tions were found in five probands and possible causal mu-
tations in three (Klein et al., 2014), giving a total yield of
53%. An even higher yield may be possible for presumed
autosomal recessive disorders when mother-father-affected
child trios are sequenced, given the recent findings in 55
families with hereditary spastic paraplegia where the likely
diagnosis was defined in 75% (Novarino et al., 2014).
However, identifying trios is challenging for adult-onset
cases where parental samples are not readily available,
and the advantage of trios is not so apparent for autosomal
dominant disorders, which account for 44% of ataxia
patients we describe here.

Although the whole exome approach provides a major
advance in likely diagnostic yield in suspected inherited
ataxia, the approach may uncover unexpected findings,
such as mutations in genes known to cause familial
cancer syndromes, or a different neurodegenerative disease
such as familial Alzheimer’s disease. These incidental find-
ings are rare, and were not discovered in this study, but
must be considered when taking informed consent for
exome studies (Bamshad et al., 2011). It should also be
borne in mind that our study was based on only 22 pro-
bands from one geographic region. These patients were
from a largely outbred stable population of white
European extraction, and the spectrum of different dis-
ease-causing alleles and genes may differ in other parts of
the world, particularly if there is evidence of a founder
effect. In these contexts a more focused sequencing ap-
proach may be more appropriate. Our study also had
wide entry criteria, reflecting routine clinical practice.
Although it is reassuring that exome sequencing appeared
to be effective across this clinical spectrum, larger studies
may show that it is more or less effective in specific clinical
subgroups. Finally, we were unable to identify the likely
genetic basis of the ataxia in 36% families. Exome sequen-
cing the parents may reveal the discordant heterozygous
variant responsible for the disorder that is otherwise chal-
lenging to identify. This is particularly relevant for congeni-
tal or childhood-onset ataxias (Ohba et al, 2013), but
many de novo dominant mutations can also cause adult-
onset ataxia, as shown here (Fig. 1). It remains possible
that some of the later-onset cases are not primarily genet-
ically determined; however, given the relevant family his-
tory in most, there are also likely to be technical

A. Pyle et al.

explanations. Exome capture does not provide complete
coverage of all coding regions of the genome, particularly
those with GC-rich regions. In addition, large genomic
rearrangements and trinucleotide repeat sequences are not
reliably detected from exome-capture data. It is therefore
possible that some of the undiagnosed cases have patho-
genic trinucleotide expansions not routinely tested in our
region, including SCA10, 12 and 31, although these are
very rare in our experience. Finally, it is likely that some
causal variants will reside within non-coding regulatory
regions. Some of these issues will be resolved by whole
genome sequencing, although not without substantial
additional cost and bioinformatics complexity.
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