188 research outputs found

    Phase diagram of orbital-selective Mott transitions at finite temperatures

    Full text link
    Mott transitions in the two-orbital Hubbard model with different bandwidths are investigated at finite temperatures. By means of the self-energy functional approach, we discuss the stability of the intermediate phase with one orbital localized and the other itinerant, which is caused by the orbital-selective Mott transition (OSMT). It is shown that the OSMT realizes two different coexistence regions at finite temperatures in accordance with the recent results of Liebsch. We further find that the particularly interesting behavior emerges around the special condition U=Uβ€²U=U' and J=0, which includes a new type of the coexistence region with three distinct states. By systematically changing the Hund coupling, we establish the global phase diagram to elucidate the key role played by the Hund coupling on the Mott transitions.Comment: 4 pages, 6 figure

    Myelin water imaging from multi-echo T-2 MR relaxometry data using a joint sparsity constraint

    Get PDF
    Demyelination is the key pathological process in multiple sclerosis (MS). The extent of demyelination can be quantified with magnetic resonance imaging by assessing the myelin water fraction (MWF). However, long computation times and high noise sensitivity hinder the translation of MWF imaging to clinical practice. In this work, we introduce a more efficient and noise robust method to determine the MWF using a joint sparsity constraint and a pre-computed B-1(+)-T-2 dictionary.A single component analysis with this dictionary is used in an initial step to obtain a B-1(+) map. The T-2 distribution is then determined from a reduced dictionary corresponding to the estimated B-1(+) map using a combination of a non-negativity and a joint sparsity constraint.The non-negativity constraint ensures that a feasible solution with non-negative contribution of each T-2 component is obtained. The joint sparsity constraint restricts the T-2 distribution to a small set of T-2 relaxation times shared between all voxels and reduces the noise sensitivity.The applied Sparsity Promoting Iterative Joint NNLS (SPIJN) algorithm can be implemented efficiently, reducing the computation time by a factor of 50 compared to the commonly used regularized non-negative least squares algorithm. The proposed method was validated in simulations and in 8 healthy subjects with a 3D multiecho gradient- and spin echo scan at 3 T. In simulations, the absolute error in the MWF decreased from 0.031 to 0.013 compared to the regularized NNLS algorithm for SNR = 250. The in vivo results were consistent with values reported in literature and improved MWF-quantification was obtained especially in the frontal white matter. The maximum standard deviation in mean MWF in different regions of interest between subjects was smaller for the proposed method (0.0193) compared to the regularized NNLS algorithm (0.0266). In conclusion, the proposed method for MWF estimation is less computationally expensive and less susceptible to noise compared to state of the art methods. These improvements might be an important step towards clinical translation of MWF measurements.Neuro Imaging Researc

    Oxidative stress in hepatitis C infected end-stage renal disease subjects

    Get PDF
    BACKGROUND: Both uremia and hepatitis C infection is associated with increased oxidative stress. In the present study, we aimed to find out whether hepatitis C infection has any impact on oxidative stress in hemodialysis subjects. METHODS: Sixteen hepatitis C (+) hemodialysis subjects, 24 hepatitis C negative hemodialysis subjects and 24 healthy subjects were included. Total antioxidant capacity, total peroxide level and oxidative stress index were determined in all subjects. RESULTS: Total antioxidant capacity was significantly higher in controls than hemodialysis subjects with or without hepatitis C infection (all p < 0.05/3), while total peroxide level and oxidative stress index were significantly lower (all p < 0.05/3). Hepatitis C (-) hemodialysis subjects had higher total antioxidant capacity compared to hepatitis C (+) hemodialysis subjects (all p < 0.05/3). Total peroxide level and oxidative stress index was comparable between hemodialysis subjects with or without hepatitis C infection (p > 0.05/3). CONCLUSION: Oxidative stress is increased in both hepatitis C (+) and hepatitis C (-) hemodialysis subjects. However, hepatitis C infection seems to not cause any additional increase in oxidative stress in hemodialysis subjects and it may be partly due to protective effect of dialysis treatment on hepatitis C infection

    Altered expression of the suppressors PML and p53 in glioblastoma cells with the antisense-EGF-receptor

    Get PDF
    Gene amplification and enhanced expression of the epidermal growth factor receptor (EGFR) represent the major molecular genetic alteration in glioblastomas and it may play an essential role in cell growth and in the carcinogenic process. On the other hand, the nuclear suppressor proteins PML and p53 are also known to play critical roles in cancer development and in suppressing cell growth. Here we report that, in glioblastoma cells with defective EGFR function, the expressions of both promyelocytic leukaemia (PML) and p53 were altered. Cells that were transfected with the antisense-cDNA of EGFR were found to have more cells in G1 and fewer cells in S phase. In addition, the transfected cells were found to be non-responsive to EGF-induced cell growth. Interestingly, the expression of the suppressors p53 and PML were found to be significantly increased by immunohistochemical assay in the antisense-EGFR cells. Moreover, the PML expression in many of the cells was converted from the nuclear dot pattern into fine-granulated staining pattern. In contrast, the expressions of other cell cycle regulated genes and proto-oncogene, including the cyclin-dependent kinase 4 (cdk4), retinoblastoma, p16INK4a and p21H-ras, were not altered. These data indicate that there are specific inductions of PML and p53 proteins which may account for the increase in G1 and growth arrest in antisense-EGFR treated cells. It also indicates that the EGF, p53 and PML transduction pathways were linked and they may constitute an integral part of an altered growth regulatory programme. The interactions and cross-talks of these critical molecules may be very important in regulating cell growth, differentiation and cellular response to treatment in glioblastomas. Β© 1999 Cancer Research Campaig

    A Role for Cytoplasmic PML in Cellular Resistance to Viral Infection

    Get PDF
    PML gene was discovered as a fusion partner with retinoic acid receptor (RAR) Ξ± in the t(15:17) chromosomal translocation associated with acute promyelocytic leukemia (APL). Nuclear PML protein has been implicated in cell growth, tumor suppression, apoptosis, transcriptional regulation, chromatin remodeling, DNA repair, and anti-viral defense. The localization pattern of promyelocytic leukemia (PML) protein is drastically altered during viral infection. This alteration is traditionally viewed as a viral strategy to promote viral replication. Although multiple PML splice variants exist, we demonstrate that the ratio of a subset of cytoplasmic PML isoforms lacking exons 5 & 6 is enriched in cells exposed to herpes simplex virus-1 (HSV-1). In particular, we demonstrate that a PML isoform lacking exons 5 & 6, called PML Ib, mediates the intrinsic cellular defense against HSV-1 via the cytoplasmic sequestration of the infected cell protein (ICP) 0 of HSV-1. The results herein highlight the importance of cytoplasmic PML and call for an alternative, although not necessarily exclusive, interpretation regarding the redistribution of PML that is seen in virally infected cells

    Phosphorothioate antisense oligonucleotides induce the formation of nuclear bodies

    Get PDF
    Antisense oligonucleotides are powerful tools for the in vivo regulation of gene expression. We have characterized the intracellular distribution of fluorescently tagged phosphorothioate oligodeoxynucleotides (PS-ONs) at high resolution under conditions in which PS-ONs have the potential to display antisense activity. Under these conditions PS-ONs predominantly localized to the cell nucleus where they accumulated in 20-30 bright spherical foci designated phosphorothioate bodies (PS bodies), which were set against a diffuse nucleoplasmic population excluding nucleoli. PS bodies are nuclear structures that formed in cells after PS-ON delivery by transfection agents or microinjection but were observed irrespectively of antisense activity or sequence. Ultrastructurally, PS bodies corresponded to electron-dense structures of 150-300 nm diameter and resembled nuclear bodies that were found with lower frequency in cells lacking PS-ONs. The environment of a living cell was required for the de novo formation of PS bodies, which occurred within minutes after the introduction of PS-ONs. PS bodies were stable entities that underwent noticeable reorganization only during mitosis. Upon exit from mitosis, PS bodies were assembled de novo from diffuse PS-ON pools in the daughter nuclei. In situ fractionation demonstrated an association of PS-ONs with the nuclear matrix. Taken together, our data provide evidence for the formation of a nuclear body in cells after introduction of phosphorothioate oligodeoxynucleotides
    • …
    corecore