2,856 research outputs found

    JCMmode: An Adaptive Finite Element Solver for the Computation of Leaky Modes

    Full text link
    We present our simulation tool JCMmode for calculating propagating modes of an optical waveguide. As ansatz functions we use higher order, vectorial elements (Nedelec elements, edge elements). Further we construct transparent boundary conditions to deal with leaky modes even for problems with inhomogeneous exterior domains as for integrated hollow core Arrow waveguides. We have implemented an error estimator which steers the adaptive mesh refinement. This allows the precise computation of singularities near the metal's corner of a Plasmon-Polariton waveguide even for irregular shaped metal films on a standard personal computer.Comment: 11 page

    Mid-infrared observations of the SGR 1900+14 error box

    Full text link
    We report on mid-infrared observations of the compact stellar cluster located in the proximity of SGR 1900+14, and the radio/X-ray position of this soft-gamma repeater. Observations were performed in May and June of 2001 when the bursting source was in an active state. At the known radio and X-ray position of the SGR we did not detect transient mid-IR activity, although the observations were performed only hours before and after an outburst in the high-energy band.Comment: 4 pages, 3 figures, to appear in "Gamma-Ray Burst and Afterglow Astronomy 2001", Woods Hole; 5-9 Nov, 200

    On the Origin of the Dark Gamma-Ray Bursts

    Get PDF
    The origin of dark bursts - i.e. that have no observed afterglows in X-ray, optical/NIR and radio ranges - is unclear yet. Different possibilities - instrumental biases, very high redshifts, extinction in the host galaxies - are discussed and shown to be important. On the other hand, the dark bursts should not form a new subgroup of long gamma-ray bursts themselves.Comment: published in Nuovo Ciment

    The environment of the SN-less GRB 111005A at z = 0.0133

    Full text link
    The collapsar model has proved highly successful in explaining the properties of long gamma-ray bursts (GRBs), with the most direct confirmation being the detection of a supernova (SN) coincident with the majority of nearby long GRBs. Within this model, a long GRB is produced by the core-collapse of a metal-poor, rapidly rotating, massive star. The detection of some long GRBs in metal-rich environments, and more fundamentally the three examples of long GRBs (GRB 060505, GRB 060614 and GRB 111005A) with no coincident SN detection down to very deep limits is in strong contention with theoretical expectations. In this paper we present MUSE observations of the host galaxy of GRB 111005A, which is the most recent and compelling example yet of a SN-less, long GRB. At z=0.01326, GRB 111005A is the third closest GRB ever detected, and second closest long duration GRB, enabling the nearby environment to be studied at a resolution of 270 pc. From the analysis of the MUSE data cube, we find GRB 111005A to have occurred within a metal-rich environment with little signs of ongoing star formation. Spectral analysis at the position of the GRB indicates the presence of an old stellar population (tau > 10 Myr), which limits the mass of the GRB progenitor to M_ZAMS<15 Msolar, in direct conflict with the collapsar model. Our deep limits on the presence of any SN emission combined with the environmental conditions at the position of GRB 111005A necessitate the exploration of a novel long GRB formation mechanism that is unrelated to massive stars.Comment: Now accepted by A&A. Manuscript replaced to match accepted version. Some additional discussion added, and velocity map of the host galaxy now include

    Numerical Investigation of Light Scattering off Split-Ring Resonators

    Full text link
    Recently, split ring-resonators (SRR's) have been realized experimentally in the near infrared (NIR) and optical regime. In this contribution we numerically investigate light propagation through an array of metallic SRR's in the NIR and optical regime and compare our results to experimental results. We find numerical solutions to the time-harmonic Maxwell's equations by using advanced finite-element-methods (FEM). The geometry of the problem is discretized with unstructured tetrahedral meshes. Higher order, vectorial elements (edge elements) are used as ansatz functions. Transparent boundary conditions and periodic boundary conditions are implemented, which allow to treat light scattering problems off periodic structures. This simulation tool enables us to obtain transmission and reflection spectra of plane waves which are incident onto the SRR array under arbitrary angles of incidence, with arbitrary polarization, and with arbitrary wavelength-dependencies of the permittivity tensor. We compare the computed spectra to experimental results and investigate resonances of the system.Comment: 9 pages, 8 figures (see original publication for images with a better resolution
    • …
    corecore