345 research outputs found

    Genetic Studies of Sulfadiazine-resistant and Methionine-requiring \u3cem\u3eNeisseria\u3c/em\u3e Isolated From Clinical Material

    Get PDF
    Deoxyribonucleate (DNA) preparations were extracted from Neisseria meningitidis (four isolates from spinal fluid and blood) and N. gonorrhoeae strains, all of which were resistant to sulfadiazine upon primary isolation. These DNA preparations, together with others from in vitro mutants of N. meningitidis and N. perflava, were examined in transformation tests by using as recipient a drug-susceptible strain of N. meningitidis (Ne 15 Sul-s Met+) which was able to grow in a methionine-free defined medium. The sulfadiazine resistance typical of each donor was introduced into the uniform constitution of this recipient. Production of p-aminobenzoic acid was not significantly altered thereby. Transformants elicited by DNA from the N. meningitidis clinical isolates were resistant to at least 200 μg of sulfadiazine/ml, and did not show a requirement for methionine (Sul-r Met+). DNA from six strains of N. gonorrhoeae, which were isolated during the period of therapeutic use of sulfonamides, conveyed lower degrees of resistance and, invariably, a concurrent methionine requirement (Sul-r/Met−). The requirement of these transformants, and that of in vitro mutants selected on sulfadiazine-agar, was satisfied by methionine, but not by vitamin B12, homocysteine, cystathionine, homoserine, or cysteine. Sul-r Met+ and Sul-r/Met− loci could coexist in the same genome, but were segregated during transformation. On the other hand, the dual Sul-r/Met− properties were not separated by recombination, but were eliminated together. DNA from various Sul-r/Met− clones tested against recipients having nonidentical Sul-r/Met− mutant sites yielded Sul-s Met+ transformants. The met locus involved is genetically complex, and will be a valuable tool for studies of genetic fine structure of members of Neisseria, and of genetic homology between species

    Measure representation and multifractal analysis of complete genomes

    Get PDF
    This paper introduces the notion of measure representation of DNA sequences. Spectral analysis and multifractal analysis are then performed on the measure representations of a large number of complete genomes. The main aim of this paper is to discuss the multifractal property of the measure representation and the classification of bacteria. From the measure representations and the values of the DqD_{q} spectra and related CqC_{q} curves, it is concluded that these complete genomes are not random sequences. In fact, spectral analyses performed indicate that these measure representations considered as time series, exhibit strong long-range correlation. For substrings with length K=8, the DqD_{q} spectra of all organisms studied are multifractal-like and sufficiently smooth for the CqC_{q} curves to be meaningful. The CqC_{q} curves of all bacteria resemble a classical phase transition at a critical point. But the 'analogous' phase transitions of chromosomes of non-bacteria organisms are different. Apart from Chromosome 1 of {\it C. elegans}, they exhibit the shape of double-peaked specific heat function.Comment: 12 pages with 9 figures and 1 tabl

    The disulphide isomerase DsbC cooperates with the oxidase DsbA in a DsbD-independent manner

    Full text link
    In Escherichia coli , DsbA introduces disulphide bonds into secreted proteins. DsbA is recycled by DsbB, which generates disulphides from quinone reduction. DsbA is not known to have any proofreading activity and can form incorrect disulphides in proteins with multiple cysteines. These incorrect disulphides are thought to be corrected by a protein disulphide isomerase, DsbC, which is kept in the reduced and active configuration by DsbD. The DsbC/DsbD isomerization pathway is considered to be isolated from the DsbA/DsbB pathway. We show that the DsbC and DsbA pathways are more intimately connected than previously thought. dsbA - dsbC - mutants have a number of phenotypes not exhibited by either dsbA - , dsbC - or dsbA - dsbD - mutations: they exhibit an increased permeability of the outer membrane, are resistant to the lambdoid phage φ80, and are unable to assemble the maltoporin LamB. Using differential two-dimensional liquid chromatographic tandem mass spectrometry/mass spectrometry analysis, we estimated the abundance of about 130 secreted proteins in various dsb - strains. dsbA - dsbC - mutants exhibit unique changes at the protein level that are not exhibited by dsbA - dsbD - mutants. Our data indicate that DsbC can assist DsbA in a DsbD-independent manner to oxidatively fold envelope proteins. The view that DsbC's function is limited to the disulphide isomerization pathway should therefore be reinterpreted.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72894/1/MMI_6030_sm_Tables_S1-S4.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/72894/2/MMI_tables_s1-s4.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/72894/3/j.1365-2958.2007.06030.x.pd

    A Filamentous Hemagglutinin-Like Protein of Xanthomonas axonopodis pv. citri, the Phytopathogen Responsible for Citrus Canker, Is Involved in Bacterial Virulence

    Get PDF
    Xanthomonas axonopodis pv. citri, the phytopathogen responsible for citrus canker has a number of protein secretion systems and among them, at least one type V protein secretion system belonging to the two-partner secretion pathway. This system is mainly associated to the translocation of large proteins such as adhesins to the outer membrane of several pathogens. Xanthomonas axonopodis pv. citri possess a filamentous hemagglutinin-like protein in close vicinity to its putative transporter protein, XacFhaB and XacFhaC, respectively. Expression analysis indicated that XacFhaB was induced in planta during plant-pathogen interaction. By mutation analysis of XacFhaB and XacFhaC genes we determined that XacFhaB is involved in virulence both in epiphytic and wound inoculations, displaying more dispersed and fewer canker lesions. Unexpectedly, the XacFhaC mutant in the transporter protein produced an intermediate virulence phenotype resembling wild type infection, suggesting that XacFhaB could be secreted by another partner different from XacFhaC. Moreover, XacFhaB mutants showed a general lack of adhesion and were affected in leaf surface attachment and biofilm formation. In agreement with the in planta phenotype, adhesin lacking cells moved faster in swarming plates. Since no hyperflagellation phenotype was observed in this bacteria, the faster movement may be attributed to the lack of cell-to-cell aggregation. Moreover, XacFhaB mutants secreted more exopolysaccharide that in turn may facilitate its motility. Our results suggest that this hemagglutinin-like protein is required for tissue colonization being mainly involved in surface attachment and biofilm formation, and that plant tissue attachment and cell-to-cell aggregation are dependent on the coordinated action of adhesin molecules and exopolysaccharides

    RMDAP: A Versatile, Ready-To-Use Toolbox for Multigene Genetic Transformation

    Get PDF
    Background: The use of transgenes to improve complex traits in crops has challenged current genetic transformation technology for multigene transfer. Therefore, a multigene transformation strategy for use in plant molecular biology and plant genetic breeding is thus needed. Methodology/Principal Findings: Here we describe a versatile, ready-to-use multigene genetic transformation method, named the Recombination-assisted Multifunctional DNA Assembly Platform (RMDAP), which combines many of the useful features of existing plant transformation systems. This platform incorporates three widely-used recombination systems, namely, Gateway technology, in vivo Cre/loxP and recombineering into a highly efficient and reliable approach for gene assembly. RMDAP proposes a strategy for gene stacking and contains a wide range of flexible, modular vectors offering a series of functionally validated genetic elements to manipulate transgene overexpression or gene silencing involved in a metabolic pathway. In particular, the ability to construct a multigene marker-free vector is another attractive feature. The built-in flexibility of original vectors has greatly increased the expansibility and applicability of the system. A proof-ofprinciple experiment was confirmed by successfully transferring several heterologous genes into the plant genome. Conclusions/Significance: This platform is a ready-to-use toolbox for full exploitation of the potential for coordinate regulation of metabolic pathways and molecular breeding, and will eventually achieve the aim of what we call ‘‘one-sto

    The Monofunctional Catalase KatE of Xanthomonas axonopodis pv. citri Is Required for Full Virulence in Citrus Plants

    Get PDF
    BACKGROUND: Xanthomonas axonopodis pv. citri (Xac) is an obligate aerobic phytopathogen constantly exposed to hydrogen peroxide produced by normal aerobic respiration and by the plant defense response during plant-pathogen interactions. Four putative catalase genes have been identified in silico in the Xac genome, designated as katE, catB, srpA (monofunctional catalases) and katG (bifunctional catalase). METHODOLOGY/PRINCIPAL FINDINGS: Xac catalase activity was analyzed using native gel electrophoresis and semi-quantitative RT-PCR. We demonstrated that the catalase activity pattern was regulated in different growth stages displaying the highest levels during the stationary phase. KatE was the most active catalase in this phase of growth. At this stage cells were more resistant to hydrogen peroxide as was determined by the analysis of CFU after the exposition to different H(2)O(2) concentrations. In addition, Xac exhibited an adaptive response to hydrogen peroxide, displaying higher levels of catalase activity and H(2)O(2) resistance after treatment with sub-lethal concentrations of the oxidant. In the plant-like medium XVM2 the expression of KatE was strongly induced and in this medium Xac was more resistant to H(2)O(2). A XackatE mutant strain was constructed by insertional mutagenesis. We observed that catalase induction in stationary phase was lost meanwhile the adaptive response to peroxide was maintained in this mutant. Finally, the XackatE strain was assayed in planta during host plant interaction rendering a less aggressive phenotype with a minor canker formation. CONCLUSIONS: Our results confirmed that in contrast to other Xanthomonas species, Xac catalase-specific activity is induced during the stationary phase of growth in parallel with the bacterial resistance to peroxide challenge. Moreover, Xac catalases expression pattern is modified in response to any stimuli associated with the plant or the microenvironment it provides. The catalase KatE has been shown to have an important function for the colonization and survival of the bacterium in the citrus plant during the pathogenic process. Our work provides the first genetic evidence to support a monofunctional catalase as a virulence factor in Xac

    Marking Embryonic Stem Cells with a 2A Self-Cleaving Peptide: A NKX2-5 Emerald GFP BAC Reporter

    Get PDF
    Fluorescent reporters are useful for assaying gene expression in living cells and for identifying and isolating pure cell populations from heterogeneous cultures, including embryonic stem (ES) cells. Multiple fluorophores and genetic selection markers exist; however, a system for creating reporter constructs that preserve the regulatory sequences near a gene's native ATG start site has not been widely available.Here, we describe a series of modular marker plasmids containing independent reporter, bacterial selection, and eukaryotic selection components, compatible with both Gateway recombination and lambda prophage bacterial artificial chromosome (BAC) recombineering techniques. A 2A self-cleaving peptide links the reporter to the native open reading frame. We use an emerald GFP marker cassette to create a human BAC reporter and ES cell reporter line for the early cardiac marker NKX2-5. NKX2-5 expression was detected in differentiating mouse ES cells and ES cell-derived mice.Our results describe a NKX2-5 ES cell reporter line for studying early events in cardiomyocyte formation. The results also demonstrate that our modular marker plasmids could be used for generating reporters from unmodified BACs, potentially as part of an ES cell reporter library

    Two Plant Bacteria, S. meliloti and Ca. Liberibacter asiaticus, Share Functional znuABC Homologues That Encode for a High Affinity Zinc Uptake System

    Get PDF
    The Znu system, encoded for by znuABC, can be found in multiple genera of bacteria and has been shown to be responsible for the import of zinc under low zinc conditions. Although this high-affinity uptake system is known to be important for both growth and/or pathogenesis in bacteria, it has not been functionally characterized in a plant-associated bacterium. A single homologue of this system has been identified in the plant endosymbiont, Sinorhizobium meliloti, while two homologous systems were found in the destructive citrus pathogen, Candidatus Liberibacter asiaticus. To understand the role of these protein homologues, a complementation assay was devised allowing the individual genes that comprise the system to be assayed independently for their ability to reinstate a partially-inactivated Znu system. Results from the assays have demonstrated that although all of the genes from S. meliloti were able to restore activity, only one of the two Ca. Liberibacter asiaticus encoded gene clusters contained genes that were able to functionally complement the system. Additional analysis of the gene clusters reveals that distinct modes of regulation may also exist between the Ca. Liberibacter asiaticus and S. meliloti import systems despite the intracellular-plant niche common to both of these bacteria
    • …
    corecore