65,149 research outputs found

    Pulsed operation and performance of commercial GaN HEMTs

    Get PDF

    Evaluation of commercial GaN HEMTs for pulsed power applications

    Get PDF
    A non-conformally invariant coupling between the inflaton and the photon in the minimal Lorentz-violating standard model extension is analyzed. For specific forms of the Lorentz-violating background tensor, the strong-coupling and back-reaction problems of magnetogenesis in de Sitter inflation with scale ∼1016 GeV{\sim }10^{16}\,\hbox {GeV} are evaded, the electromagnetic-induced primordial spectra of (Gaussian and non-Gaussian) scalar and tensor curvature perturbations are compatible with cosmic microwave background observations, and the inflation-produced magnetic field directly accounts for cosmic magnetic fields

    Evaluation of commercial GaN HEMTs for pulsed power applications

    Get PDF

    China\u27s Foreign Relations: Selected Studies

    Get PDF

    Resonant conditions for Love wave guiding layer thickness

    Get PDF
    In this work we report a systematic investigation of polymer overlayer thickness in a Love wave device working at a fundamental frequency of 110MHz and at the 330MHz harmonic. At both frequencies we observe the initial reduction in insertion loss associated with a Love wave device. Significantly, we also observe a series of resonant conditions as the layer thickness is further increased. The separation of these resonances is attributed to an increase in thickness of half of the acoustic wavelength in the polymer

    Pulse mode operation of Love wave devices for biosensing applications

    Get PDF
    In this work we present a novel pulse mode Love wave biosensor that monitors both changes in amplitude and phase. A series of concentrations of 3350 molecular weight poly(ethylene glycol) (PEG) solutions are used as a calibration sequence for the pulse mode system using a network analyzer and high frequency oscilloscope. The operation of the pulse mode system is then compared to the continuous wave network analyzer by showing a sequence of deposition and removal of a model mass layer of palmitoyl-oleoyl-sn-glycerophosphocholine (POPC) vesicles. This experimental apparatus has the potential for making many hundreds of measurements a minute and so allowing the dynamics of fast interactions to be observed

    Generating optimized Fourier interpolation routines for density function theory using SPIRAL

    Get PDF
    © 2015 IEEE.Upsampling of a multi-dimensional data-set is an operation with wide application in image processing and quantum mechanical calculations using density functional theory. For small up sampling factors as seen in the quantum chemistry code ONETEP, a time-shift based implementation that shifts samples by a fraction of the original grid spacing to fill in the intermediate values using a frequency domain Fourier property can be a good choice. Readily available highly optimized multidimensional FFT implementations are leveraged at the expense of extra passes through the entire working set. In this paper we present an optimized variant of the time-shift based up sampling. Since ONETEP handles threading, we address the memory hierarchy and SIMD vectorization, and focus on problem dimensions relevant for ONETEP. We present a formalization of this operation within the SPIRAL framework and demonstrate auto-generated and auto-tuned interpolation libraries. We compare the performance of our generated code against the previous best implementations using highly optimized FFT libraries (FFTW and MKL). We demonstrate speed-ups in isolation averaging 3x and within ONETEP of up to 15%

    What is broad-range 16S rDNA PCR?

    Get PDF
    PCRs have revolutionised the detection of bacteria in clinical samples since their widespread introduction in the 1990s.1 Quantitative PCR (qPCR), also known as specific PCR, involves the targeting of particular bacterial species. The technique uses specific primers (short strands of nucleic acid needed to initiate DNA replication) and fluorescent probes to allow real-time quantification of target bacterial DNA during amplification. The qPCR assay is a mainstay of microbiological diagnostics within the National Health Service (NHS). At our hospital approximately 200 qPCRs are performed per week for the investigation of bacterial infections. Although qPCR is by far the most frequently used molecular technique in bacterial diagnostics, in certain scenarios a broad-range (non-specific) 16S rDNA (ribosomal DNA) PCR is increasingly being used. Broad-range 16S rDNA PCR is also more commonly used in research settings, originally for use in detecting and identifying unusual bacterial species but now more widely used in the rapidly expanding field of microbiome research. This technique provides the initial step in the process of analysing complex microbial communities in human, zoological and even geological settings. In the future, analysis of individualised microbial communities using broad-range 16S rDNA PCR may be a key component of personalised medicine

    Large calculi within malpositioned and malformed kidneys, is percutaneous nephrolithotomy (PCNL) feasible? A Single Center’s Experience over 10 Years

    Get PDF
    Background and Purpose: Percutaneous nephrolithotomy (PCNL) for large calculi within malpositioned and malformed kidneys is a challenging problem for urologist because of the abnormal anatomy. The aim of this study was to evaluate and to review our experience with PCNLin malpositioned and malformed kidneys with large calculi.Patients and Methods: Between January 2000 and December 2009, we performed PCNL in 36 patients with large calculi in malpositioned and malformed kidneys, including 16 patients with horseshoe kidneys, 11 patients with rotational anomalous, three patients with transplanted kidneyand six patients with ectopic pelvic kidneys. After appropriate preoperative evaluation, the procedure was performed by choosing anterior,posterior or laparoscopic assisted approaches under fluoroscopic and ultrasound guidance. PCNL access was made in the upper pole of the kidney in 21 (58.3%) patients, in the midpole in 14 (38.9%) patients, and in the lower pole in one patient (2.8%).Results: The mean age of the patients was 37.5 years (range 21- 57) with male: female ratio 2.7: 1, the mean stone size was 2.9 cm (range 2.1- 4.9). Complete stone removal was achieved in 26 (72.2%) patients. A second-look procedure for residual stone removal was required in nine patients (25%), five of them via the same tract and three patients required another access, four of them became stone free, four patients required adjuvant ESWL sessions for the residual stones, and onepatient converted to open surgery due to difficulty in creating an access.The mean operating time for PCNL was 95 minutes (range 45-120), and the mean hospital stay was 3.7 days (range 3-8 days). Blood transfusion was required for three (8.3%) patients, transient postoperativepyrexia encountered in six (16.7%) patients and one patient had persistent urine leak (2.8%). Serious complications were encountered, small bowel perforation was occurred in two (5.6%) patients, and both were treated by laparatomy with primary repair of injury with uneventfuloutcome.Conclusion: Patients with malposition and malformed kidneys and large calculi can be managed safely and effectively with PCNL when they are properly selected and appropriately assessed before operation. Stone management in malformed and malposition kidneys is challenging, andestablishing percutaneous renal access is the most crucial step in the procedure
    • …
    corecore