31 research outputs found

    Lack of effect of adenosine on the function of rodent osteoblasts and osteoclasts in vitro

    Get PDF
    Extracellular ATP, signalling through P2 receptors, exerts well-documented effects on bone cells, inhibiting mineral deposition by osteoblasts and stimulating the formation and resorptive activity of osteoclasts. The aims of this study were to determine the potential osteotropic effects of adenosine, the hydrolysis product of ATP, on primary bone cells in vitro. We determined the effect of exogenous adenosine on (1) the growth, alkaline phosphatase (TNAP) activity and bone-forming ability of osteoblasts derived from the calvariae of neonatal rats and mice and the marrow of juvenile rats and (2) the formation and resorptive activity of osteoclasts from juvenile mouse marrow. Reverse transcription polymerase chain reaction (RT-PCR) analysis showed marked differences in the expression of P1 receptors in osteoblasts from different sources. Whilst mRNA for the A1 and A2B receptors was expressed by all primary osteoblasts, A2A receptor expression was limited to rat bone marrow and mouse calvarial osteoblasts and the A3 receptor to rat bone marrow osteoblasts. We found that adenosine had no detectable effects on cell growth, TNAP activity or bone formation by rodent osteoblasts in vitro. The analogue 2-chloroadenosine, which is hydrolysed more slowly than adenosine, had no effects on rat or mouse calvarial osteoblasts but increased TNAP activity and bone formation by rat bone marrow osteoblasts by 30–50 % at a concentration of 1 μM. Osteoclasts were found to express the A2A, A2B and A3 receptors; however, neither adenosine (≤100 μM) nor 2-chloroadenosine (≤10 μM) had any effect on the formation or resorptive activity of mouse osteoclasts in vitro. These results suggest that adenosine, unlike ATP, is not a major signalling molecule in the bone

    The Response of Lemna minor to Mixtures of Pesticides That Are Commonly Used in Thailand

    Get PDF
    In the field, aquatic organisms are exposed to multiple contaminants rather than to single compounds. It is therefore important to understand the toxic interactions of co-occurring substances in the environment. The aim of the study was to assess the effects of individual herbicides (atrazine, 2,4-D, alachlor and paraquat) that are commonly used in Thailand and their mixtures on Lemna minor. Plants were exposed to individual and binary mixtures for 7 days and the effects on plant growth rate were assesed based on frond area measurements. Experimental observations of mixture toxicity were compared with predictions based on single herbicide exposure data using concentration addition and independent action models. The single compound studies showed that paraquat and alachlor were most toxic to L. minor, followed by atrazine and then 2,4-D. For the mixtures, atrazine with 2,4-D appeared to act antagonistically, whereas alachlor and paraquat showed synergism

    Computational modelling and analysis of porous bleed holes at supersonic speeds

    No full text
    © 2020, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.Shock Wave / Boundary Layer Interaction is an important issue that should be taken into account when studying inlet design. Bleed holes have traditionally been used to remove the lower momentum part of the boundary layer to avoid separation from adverse Shock Wave / Boundary Layer Interaction. In this study, modeling of porous bleed holes investigated in computational fluid dynamics on a flat plate with and without an oblique shock interaction. For the validation of the method, three-dimensional CFD simulations are performed on fully resolved models with modeling bleed plenum and hole cavity details. Due to the ease of modeling on complex geometries, it is aimed to evaluate the unstructured grid approach on bleed flow. A grid convergence study is conducted on different levels of grids using Spalart-Allmaras, Realizable k-ε and SST k-ω turbulence models. Optimal grid resolution and turbulence model are determined for bleed flow simulations. Further CFD analyzes are performed at different total pressure ratios (Ppl/Pt) and results are compared with experimental data. The comparisons show good agreement between numerical solutions and test data for both cases. The comparisons show that the numerical solutions are in good agreement with the test data for both cases
    corecore