5,437 research outputs found

    Decay of accelerated particles

    Get PDF
    We study how the decay properties of particles are changed by acceleration. It is shown that under the influence of acceleration (1) the lifetime of particles is modified and (2) new processes (like the decay of the proton) become possible. This is illustrated by considering scalar models for the decay of muons, pions, and protons. We discuss the close conceptual relation between these processes and the Unruh effect.Comment: Latex2e, 12 pages, 6 Postscript figures included with epsfig, to appear in Phys. Rev.

    Vacuum polarization for lukewarm black holes

    Get PDF
    We compute the renormalized expectation value of the square of a quantum scalar field on a Reissner-Nordström–de Sitter black hole in which the temperatures of the event and cosmological horizons are equal (“lukewarm” black hole). Our numerical calculations for a thermal state at the same temperature as the two horizons indicate that this renormalized expectation value is regular on both the event and cosmological horizons. We are able to show analytically, using an approximation for the field modes near the horizons, that this is indeed the case

    Enhancement of the electronic contribution to the low temperature specific heat of Fe/Cr magnetic multilayer

    Full text link
    We measured the low temperature specific heat of a sputtered (Fe23A˚/Cr12A˚)33(Fe_{23\AA}/Cr_{12\AA})_{33} magnetic multilayer, as well as separate 1000A˚1000\AA thick Fe and Cr films. Magnetoresistance and magnetization measurements on the multilayer demonstrated antiparallel coupling between the Fe layers. Using microcalorimeters made in our group, we measured the specific heat for 4<T<30K4<T<30 K and in magnetic fields up to 8T8 T for the multilayer. The low temperature electronic specific heat coefficient of the multilayer in the temperature range 4<T<14K4<T<14 K is γML=8.4mJ/K2gat\gamma_{ML}=8.4 mJ/K^{2}g-at. This is significantly larger than that measured for the Fe or Cr films (5.4 and 3.5mJ/K2mol3.5 mJ/K^{2}mol respectively). No magnetic field dependence of γML\gamma_{ML} was observed up to 8T8 T. These results can be explained by a softening of the phonon modes observed in the same data and the presence of an Fe-Cr alloy phase at the interfaces.Comment: 20 pages, 5 figure

    Linear Response Calculations of Spin Fluctuations

    Full text link
    A variational formulation of the time--dependent linear response based on the Sternheimer method is developed in order to make practical ab initio calculations of dynamical spin susceptibilities of solids. Using gradient density functional and a muffin-tin-orbital representation, the efficiency of the approach is demonstrated by applications to selected magnetic and strongly paramagnetic metals. The results are found to be consistent with experiment and are compared with previous theoretical calculations.Comment: 11 pages, RevTex; 3 Figures, postscript, high-resolution printing (~1200dpi) is desire

    On the injectivity of the circular Radon transform arising in thermoacoustic tomography

    Full text link
    The circular Radon transform integrates a function over the set of all spheres with a given set of centers. The problem of injectivity of this transform (as well as inversion formulas, range descriptions, etc.) arises in many fields from approximation theory to integral geometry, to inverse problems for PDEs, and recently to newly developing types of tomography. The article discusses known and provides new results that one can obtain by methods that essentially involve only the finite speed of propagation and domain dependence for the wave equation.Comment: To appear in Inverse Problem

    An intuitionistic approach to scoring DNA sequences against transcription factor binding site motifs

    Get PDF
    Background: Transcription factors (TFs) control transcription by binding to specific regions of DNA called transcription factor binding sites (TFBSs). The identification of TFBSs is a crucial problem in computational biology and includes the subtask of predicting the location of known TFBS motifs in a given DNA sequence. It has previously been shown that, when scoring matches to known TFBS motifs, interdependencies between positions within a motif should be taken into account. However, this remains a challenging task owing to the fact that sequences similar to those of known TFBSs can occur by chance with a relatively high frequency. Here we present a new method for matching sequences to TFBS motifs based on intuitionistic fuzzy sets (IFS) theory, an approach that has been shown to be particularly appropriate for tackling problems that embody a high degree of uncertainty. Results: We propose SCintuit, a new scoring method for measuring sequence-motif affinity based on IFS theory. Unlike existing methods that consider dependencies between positions, SCintuit is designed to prevent overestimation of less conserved positions of TFBSs. For a given pair of bases, SCintuit is computed not only as a function of their combined probability of occurrence, but also taking into account the individual importance of each single base at its corresponding position. We used SCintuit to identify known TFBSs in DNA sequences. Our method provides excellent results when dealing with both synthetic and real data, outperforming the sensitivity and the specificity of two existing methods in all the experiments we performed. Conclusions: The results show that SCintuit improves the prediction quality for TFs of the existing approaches without compromising sensitivity. In addition, we show how SCintuit can be successfully applied to real research problems. In this study the reliability of the IFS theory for motif discovery tasks is proven

    Electronic Structure of Stripes in Two-Dimensional Hubbard Model

    Full text link
    Focusing on La_{2-x}Sr_{x}CuO_{4}, we study the stripe structure by the self-consistent mean-field theory of the Hubbard model. By introducing the realistic Fermi surface topology, the SDW-gapped insulator is changed to metallic. The solitonic features of the stripe structure and the contribution of the mid-gap states are presented. We consider the band dispersion, the local density of states, the spectral weight, and the optical conductivity, associated with the solitonic structure. These results may provide important information for the experimental research of the stripe structure, such as the angle-resolved photoemission experiments. The ``Fermi surface'' shape is changed depending on the ratio of the incommensurability delta and the hole density n_h. In real space, only the stripe region is metallic when delta/n_h is large.Comment: LaTeX 12 pages (using jpsj macros) with 16 figure
    corecore