1,524 research outputs found

    Solar Physics - Plasma Physics Workshop

    Get PDF
    A summary of the proceedings of a conference whose purpose was to explore plasma physics problems which arise in the study of solar physics is provided. Sessions were concerned with specific questions including the following: (1) whether the solar plasma is thermal or non-themal; (2) what spectroscopic data is required; (3) what types of magnetic field structures exist; (4) whether magnetohydrodynamic instabilities occur; (5) whether resistive or non-magnetohydrodynamic instabilities occur; (6) what mechanisms of particle acceleration have been proposed; and (7) what information is available concerning shock waves. Very few questions were answered categorically but, for each question, there was discussion concerning the observational evidence, theoretical analyses, and existing or potential laboratory and numerical experiments

    Invariant vector fields and the prolongation method for supersymmetric quantum systems

    Full text link
    The kinematical and dynamical symmetries of equations describing the time evolution of quantum systems like the supersymmetric harmonic oscillator in one space dimension and the interaction of a non-relativistic spin one-half particle in a constant magnetic field are reviewed from the point of view of the vector field prolongation method. Generators of supersymmetries are then introduced so that we get Lie superalgebras of symmetries and supersymmetries. This approach does not require the introduction of Grassmann valued differential equations but a specific matrix realization and the concept of dynamical symmetry. The Jaynes-Cummings model and supersymmetric generalizations are then studied. We show how it is closely related to the preceding models. Lie algebras of symmetries and supersymmetries are also obtained.Comment: 37 pages, 7 table

    Goitre and Iodine Deficiency in Europe

    Get PDF
    The prevalence of endemic iodine-deficiency goitre in Europe has been reduced in many areas by the introduction of iodination programmes. Recent reports, however, show that goitre remains a significant problem and that its prevalence has not decreased in a number of European countries. Hetzel1 has pointed out that the high global prevalence of iodine-deficiency disorders could be eradicated within 5-10 years by introduction of an iodised salt programme. The current World Health Organisation recommendations for iodine intake are between 150 and 300 μg/da

    On realizations of nonlinear Lie algebras by differential operators

    Full text link
    We study realizations of polynomial deformations of the sl(2,R)- Lie algebra in terms of differential operators strongly related to bosonic operators. We also distinguish their finite- and infinite-dimensional representations. The linear, quadratic and cubic cases are explicitly visited but the method works for arbitrary degrees in the polynomial functions. Multi-boson Hamiltonians are studied in the context of these ``nonlinear'' Lie algebras and some examples dealing with quantum optics are pointed out.Comment: 21 pages, Latex; New examples added in Sect.

    q-Supersymmetric Generalization of von Neumann's Theorem

    Full text link
    Assuming that there exist operators which form an irreducible representation of the q-superoscillator algebra, it is proved that any two such representations are equivalent, related by a uniquely determined superunitary transformation. This provides with a q-supersymmetric generalization of the well-known uniqueness theorem of von Neumann for any finite number of degrees of freedom.Comment: 10 pages, Latex, HU-TFT-93-2

    Local Simulation Algorithms for Coulomb Interaction

    Full text link
    Long ranged electrostatic interactions are time consuming to calculate in molecular dynamics and Monte-Carlo simulations. We introduce an algorithmic framework for simulating charged particles which modifies the dynamics so as to allow equilibration using a local Hamiltonian. The method introduces an auxiliary field with constrained dynamics so that the equilibrium distribution is determined by the Coulomb interaction. We demonstrate the efficiency of the method by simulating a simple, charged lattice gas.Comment: Last figure changed to improve demonstration of numerical efficienc

    (596) Scheila in outburst: a probable collision event in the main asteroid belt

    Get PDF
    Descripción basada en el artículo versión final de la editora. Texto completo versión preprint.Images of asteroid (596) Scheila have been acquired at various dates after the discovery of the 2010 outburst. Assuming a short-duration event scenario, as suggested by the quick vanishing of the dust tail brightness with time, and numerically integrating the equation of motion of individual particles ejected from the surface, we have developed a tail model from which we estimate the parameters associated with the geometry of the ejection, the size distribution, and the velocity distribution of the ejected particles, as well as the total mass ejected. We found a weak inverse power-law dependence of ejection velocity versus particle radius, with velocities ranging from 50 to 80 m s–1 for particle radii in the range from 5 cm to 8 × 10–5 cm, respectively. These velocities are very different from those expected from ice sublimation at the asteroid heliocentric distance (~3 AU) and suggest a collision scenario as a likely cause of the outburst. We found that the ejected particles are distributed in size following a power law of index -3, and, based on the ejecta mass and scaling laws, the impactor size is estimated at 30-90 m in radius, assuming an impact velocity of ~5 km s–1, and the same density (1500 kg m–3) for the asteroid as for the projectile. We have inferred an asymmetry in the ejecta along the axis normal to the asteroid orbit plane, a likely indicator of an oblique impact. The impact is estimated to have occurred on November 27, with an accuracy not better than ±3 days.Peer reviewe

    Energy-Filtering Transmission Electron Microscopy as a Tool for Structural and Compositional Analysis of Isolated Ferritin Particles

    Get PDF
    Structural and compositional analysis of isolated horse-spleen ferritin particles was performed by energy filtering transmission electron microscopy (EFTEM). Ferritin particles were collected in ultrathin (2 nm thick) chromium films and analyzed without any additional stain by electron energy-loss spectroscopy (EELS) for iron and carbon and by electron-spectroscopic imaging (ESI) for carbon. The ultrastructure of the proteinaceous shell of the ferritin particle, as obtained by the carbon net-intensity electron spectroscopical and carbon concentration-distribution images, was qualitatively compared to the structure as acquired by a negative-staining procedure. Quantitative analysis of the number of carbon atoms in the ferritin-shell proteins was carried out through an ESI-acquisition protocol and processing procedure with calibrated attenuation filters in the optical path to the TV camera. This procedure included images acquired with calibrated attenuation filters for the compensation of shading and the non-linear performance of the TV camera used in the analytical part of the procedure. A new ESI-Spectra program is proposed that allows element-related spectra to be generated at any place and with any frame size in a contrast-sensitive or other type of image present on the computer monitor screen
    • …
    corecore