6 research outputs found

    Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer's disease: A randomized, double-blind, controlled trial

    Get PDF
    Background and aims: Combined probiotic and selenium supplementation may improve Alzheimer's disease (AD) by correcting metabolic abnormalities, and attenuating inflammation and oxidative stress. This study aimed to determine the effects of probiotic and selenium co-supplementation on cognitive function and metabolic status among patients with AD. Methods: This randomized, double-blind, controlled clinical trial was conducted among 79 patients with AD. Patients were randomly assigned to receive either selenium (200 μg/day) plus probiotic containing Lactobacillus acidophilus, Bifidobacterium bifidum, and Bifidobacterium longum (2 � 109 CFU/day each) (n = 27), selenium (200 μg/day) (n = 26) or placebo (n = 26) for 12 weeks. Results: Selenium supplementation, compared with the placebo, significantly reduced serum high sensitivity C-reactive protein (hs-CRP) (P < 0.001), insulin (P = 0.001), homeostasis model of assessment-insulin resistance (HOMA-IR) (P = 0.002), LDL-cholesterol (P = 0.04) and total-/HDL-cholesterol ratio (P = 0.004), and significantly increased total glutathione (GSH) (P = 0.001) and the quantitative insulin sensitivity check index (QUICKI) (P = 0.01). Compared with only selenium and placebo, probiotic and selenium co-supplementation resulted in a significant increase in mini-mental state examination score (+1.5 ± 1.3 vs. +0.5 ± 1.2 and �0.2 ± 1.1, respectively, P < 0.001). Probiotic plus selenium intake resulted in a significant reduction in hs-CRP (�1.6 ± 1.4 vs. �0.8 ± 1.0 and +0.1 ± 0.5 mg/L, respectively, P < 0.001), and a significant increase in total antioxidant capacity (+89.4 ± 129.6 vs. +20.0 ± 62.5 and �0.7 ± 27.2 mmol/L, respectively, P = 0.001) and GSH (+122.8 ± 136.5 vs. +102.2 ± 135.2 and +1.5 ± 53.2 μmol/L, respectively, P = 0.001) compared with only selenium and placebo. In addition, subjects who received probiotic plus selenium supplements had significantly lower insulin levels (�2.1 ± 2.5 vs. �1.0 ± 1.3 and +0.7 ± 2.0 μIU/mL, respectively, P < 0.001), HOMA-IR (�0.5 ± 0.6 vs. �0.2 ± 0.3 and +0.1 ± 0.4, respectively, P < 0.001), and higher QUICKI (+0.01 ± 0.01 vs. +0.005 ± 0.007 and �0.002 ± 0.01, respectively, P < 0.006) compared with only selenium and placebo. Additionally, probiotic and selenium co-supplementation resulted in a significant reduction in serum triglycerides (�17.9 ± 26.1 vs. �3.5 ± 33.9 and +0.3 ± 9.3 mg/dL, respectively, P = 0.02), VLDL- (�3.6 ± 5.2 vs. �0.7 ± 6.8 and +0.05 ± 1.8 mg/dL, respectively, P = 0.02), LDL- (�8.8 ± 17.8 vs. �8.1 ± 19.2 and +2.7 ± 19.0 mg/dL, respectively, P = 0.04) and total-/HDL-cholesterol (�0.3 ± 0.7 vs. �0.4 ± 0.9 and +0.3 ± 0.6, respectively, P = 0.005) compared with only selenium and placebo. Conclusions: Overall, we found that probiotic and selenium co-supplementation for 12 weeks to patients with AD improved cognitive function and some metabolic profiles. This study was registered in the Iranian website (www.irct.ir) for registration of clinical trials (http://www.irct.ir: IRCT20170612034497N5). © 2018 Elsevier Ltd and European Society for Clinical Nutrition and Metabolis

    Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer's disease: A randomized, double-blind, controlled trial

    Get PDF
    Background and aims: Combined probiotic and selenium supplementation may improve Alzheimer's disease (AD) by correcting metabolic abnormalities, and attenuating inflammation and oxidative stress. This study aimed to determine the effects of probiotic and selenium co-supplementation on cognitive function and metabolic status among patients with AD. Methods: This randomized, double-blind, controlled clinical trial was conducted among 79 patients with AD. Patients were randomly assigned to receive either selenium (200 μg/day) plus probiotic containing Lactobacillus acidophilus, Bifidobacterium bifidum, and Bifidobacterium longum (2 × 109 CFU/day each) (n = 27), selenium (200 μg/day) (n = 26) or placebo (n = 26) for 12 weeks. Results: Selenium supplementation, compared with the placebo, significantly reduced serum high sensitivity C-reactive protein (hs-CRP) (P < 0.001), insulin (P = 0.001), homeostasis model of assessment-insulin resistance (HOMA-IR) (P = 0.002), LDL-cholesterol (P = 0.04) and total-/HDL-cholesterol ratio (P = 0.004), and significantly increased total glutathione (GSH) (P = 0.001) and the quantitative insulin sensitivity check index (QUICKI) (P = 0.01). Compared with only selenium and placebo, probiotic and selenium co-supplementation resulted in a significant increase in mini-mental state examination score (+1.5 ± 1.3 vs. +0.5 ± 1.2 and −0.2 ± 1.1, respectively, P < 0.001). Probiotic plus selenium intake resulted in a significant reduction in hs-CRP (−1.6 ± 1.4 vs. −0.8 ± 1.0 and +0.1 ± 0.5 mg/L, respectively, P < 0.001), and a significant increase in total antioxidant capacity (+89.4 ± 129.6 vs. +20.0 ± 62.5 and −0.7 ± 27.2 mmol/L, respectively, P = 0.001) and GSH (+122.8 ± 136.5 vs. +102.2 ± 135.2 and +1.5 ± 53.2 μmol/L, respectively, P = 0.001) compared with only selenium and placebo. In addition, subjects who received probiotic plus selenium supplements had significantly lower insulin levels (−2.1 ± 2.5 vs. −1.0 ± 1.3 and +0.7 ± 2.0 μIU/mL, respectively, P < 0.001), HOMA-IR (−0.5 ± 0.6 vs. −0.2 ± 0.3 and +0.1 ± 0.4, respectively, P < 0.001), and higher QUICKI (+0.01 ± 0.01 vs. +0.005 ± 0.007 and −0.002 ± 0.01, respectively, P < 0.006) compared with only selenium and placebo. Additionally, probiotic and selenium co-supplementation resulted in a significant reduction in serum triglycerides (−17.9 ± 26.1 vs. −3.5 ± 33.9 and +0.3 ± 9.3 mg/dL, respectively, P = 0.02), VLDL- (−3.6 ± 5.2 vs. −0.7 ± 6.8 and +0.05 ± 1.8 mg/dL, respectively, P = 0.02), LDL- (−8.8 ± 17.8 vs. −8.1 ± 19.2 and +2.7 ± 19.0 mg/dL, respectively, P = 0.04) and total-/HDL-cholesterol (−0.3 ± 0.7 vs. −0.4 ± 0.9 and +0.3 ± 0.6, respectively, P = 0.005) compared with only selenium and placebo. Conclusions: Overall, we found that probiotic and selenium co-supplementation for 12 weeks to patients with AD improved cognitive function and some metabolic profiles. This study was registered in the Iranian website (www.irct.ir) for registration of clinical trial

    Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer's disease: A randomized, double-blind, controlled trial

    Get PDF
    Background and aims: Combined probiotic and selenium supplementation may improve Alzheimer's disease (AD) by correcting metabolic abnormalities, and attenuating inflammation and oxidative stress. This study aimed to determine the effects of probiotic and selenium co-supplementation on cognitive function and metabolic status among patients with AD. Methods: This randomized, double-blind, controlled clinical trial was conducted among 79 patients with AD. Patients were randomly assigned to receive either selenium (200 μg/day) plus probiotic containing Lactobacillus acidophilus, Bifidobacterium bifidum, and Bifidobacterium longum (2 � 109 CFU/day each) (n = 27), selenium (200 μg/day) (n = 26) or placebo (n = 26) for 12 weeks. Results: Selenium supplementation, compared with the placebo, significantly reduced serum high sensitivity C-reactive protein (hs-CRP) (P &lt; 0.001), insulin (P = 0.001), homeostasis model of assessment-insulin resistance (HOMA-IR) (P = 0.002), LDL-cholesterol (P = 0.04) and total-/HDL-cholesterol ratio (P = 0.004), and significantly increased total glutathione (GSH) (P = 0.001) and the quantitative insulin sensitivity check index (QUICKI) (P = 0.01). Compared with only selenium and placebo, probiotic and selenium co-supplementation resulted in a significant increase in mini-mental state examination score (+1.5 ± 1.3 vs. +0.5 ± 1.2 and �0.2 ± 1.1, respectively, P &lt; 0.001). Probiotic plus selenium intake resulted in a significant reduction in hs-CRP (�1.6 ± 1.4 vs. �0.8 ± 1.0 and +0.1 ± 0.5 mg/L, respectively, P &lt; 0.001), and a significant increase in total antioxidant capacity (+89.4 ± 129.6 vs. +20.0 ± 62.5 and �0.7 ± 27.2 mmol/L, respectively, P = 0.001) and GSH (+122.8 ± 136.5 vs. +102.2 ± 135.2 and +1.5 ± 53.2 μmol/L, respectively, P = 0.001) compared with only selenium and placebo. In addition, subjects who received probiotic plus selenium supplements had significantly lower insulin levels (�2.1 ± 2.5 vs. �1.0 ± 1.3 and +0.7 ± 2.0 μIU/mL, respectively, P &lt; 0.001), HOMA-IR (�0.5 ± 0.6 vs. �0.2 ± 0.3 and +0.1 ± 0.4, respectively, P &lt; 0.001), and higher QUICKI (+0.01 ± 0.01 vs. +0.005 ± 0.007 and �0.002 ± 0.01, respectively, P &lt; 0.006) compared with only selenium and placebo. Additionally, probiotic and selenium co-supplementation resulted in a significant reduction in serum triglycerides (�17.9 ± 26.1 vs. �3.5 ± 33.9 and +0.3 ± 9.3 mg/dL, respectively, P = 0.02), VLDL- (�3.6 ± 5.2 vs. �0.7 ± 6.8 and +0.05 ± 1.8 mg/dL, respectively, P = 0.02), LDL- (�8.8 ± 17.8 vs. �8.1 ± 19.2 and +2.7 ± 19.0 mg/dL, respectively, P = 0.04) and total-/HDL-cholesterol (�0.3 ± 0.7 vs. �0.4 ± 0.9 and +0.3 ± 0.6, respectively, P = 0.005) compared with only selenium and placebo. Conclusions: Overall, we found that probiotic and selenium co-supplementation for 12 weeks to patients with AD improved cognitive function and some metabolic profiles. This study was registered in the Iranian website (www.irct.ir) for registration of clinical trials (http://www.irct.ir: IRCT20170612034497N5). © 2018 Elsevier Ltd and European Society for Clinical Nutrition and Metabolis

    Biopriming of sunflower (Helianthus annuus L.) seed with Pseudomonas fluorescens for improvement of seed invigoration and seedling

    No full text
    Abstract Biopriming treatment is potentially able to promote rapid and more uniform seed germination and plants growth associated with bacterial coatings. In this study, we report application of some effective biological agents on sunflower seed and their impact on seedling. We investigated the effects of 30 strains of Pseudomonas fluorescens on improving sunflower seed germination and promotion of seedling growth. After selection of efficient strains, efficacy of biopriming seed treatment was compared with seed inoculation and priming treatments. Two strains, including UTPf76 and UTPf86, were selected for next experiments because they enhanced seed factors such as germination index, germination percentage, germination rate and vigor index and also seedling growth indices including root length, shoot height, dry and wet weight of seedlings and numbers of lateral roots. In biopriming, the selected strains were applied to the seed during osmopriming with NaCl. Biopriming was significantly improved by the capability of these strains and the highest amount (P= 0.01) of shoot height (28.2 cm), root length (35.9 cm) and seedling weight (8.9gr) reached, in comparison with other treatments and the control. As a conclusion, biopriming with Pseudomonas fluorescens UTPf76 and UTPf86 have provided very well establishment and adherence of bacteria to the seed, before planting, and thus is suggested as a proper treatment for enhancement of seed indices and improvement of seedling growth

    Supplementary Material for: Comparative Analyses of Transport Proteins Encoded within the Genomes of Bdellovibrio bacteriovorus HD100 and Bdellovibrio exovorus JSS

    No full text
    <p><i>Bdellovibrio</i>, δ-proteobacteria, including <i>B. bacteriovorus</i> (Bba) and <i>B. exovorus</i> (Bex), are obligate predators of other Gram-negative bacteria. While Bba grows in the periplasm of the prey cell, Bex grows externally. We have analyzed and compared the transport proteins of these 2 organisms based on the current contents of the Transporter Classification Database (TCDB; www.tcdb.org). Bba has 103 transporters more than Bex, 50% more secondary carriers, and 3 times as many MFS carriers. Bba has far more metabolite transporters than Bex as expected from its larger genome, but there are 2 times more carbohydrate uptake and drug efflux systems, and 3 times more lipid transporters. Bba also has polyamine and carboxylate transporters lacking in Bex. Bba has more than twice as many members of the Mot-Exb family of energizers, but both may have energizers for gliding motility. They use entirely different types of systems for iron acquisition. Both contain unexpectedly large numbers of pseudogenes and incomplete systems, suggesting that they are undergoing genome size reduction. Interestingly, all 5 outer-membrane receptors in Bba are lacking in Bex. The 2 organisms have similar numbers and types of peptide and amino acid uptake systems as well as protein and carbohydrate secretion systems. The differences observed correlate with and may account, in part, for the different lifestyles of these 2 bacterial predators.</p

    Sensitivity of predatory bacteria to different surfactants and their application to check bacterial predation

    No full text
    We evaluated the toxicity of surfactants against different predatory bacteria. Tests with Bdellovibrio bacteriovorus HD100 and SDS, an anionic surfactant, showed the predator was very sensitive; 0.02% SDS completely killed the predatory population (7-log loss; &lt; 10 PFU/ml remaining) both when free-swimming or within the bdelloplast, i.e., intraperiplasmic. Similar results were also observed with B. bacteriovorus 109J and Peredibacter starrii. In contrast, none of the prey (E. coli, Klebsiella pneumoniae, Acinetobacter baumannii, or Pseudomonas sp. DSM 50906) viabilities were negatively affected by SDS. Triton X-100, a nonionic surfactant, was slightly less toxic towards B. bacteriovorus HD100 (viability loss of only 4-log), while two cationic surfactants, i.e., benzalkonium chloride (BZC) and cetyltrimethylammonium bromide (CTAB), were toxic towards both the predator and prey. Based on the above findings, we tested the potential use of SDS as a means to control predation. Addition of 0.02% SDS immediately halted predation based upon the prey bioluminescence, which leveled off and remained steady. This was confirmed using the predator viabilities; no predators were found in any of the samples where SDS was added. Consequently, low concentrations of SDS can be used as a simple means to control B. bacteriovorus HD100 activities
    corecore