355 research outputs found

    Stabilization of carbon nanotubes by filling with inner tubes: An optical spectroscopy study on double-walled carbon nanotubes under hydrostatic pressure

    Full text link
    The stabilization of carbon nanotubes via the filling with inner tubes is demonstrated by probing the optical transitions in double-walled carbon nanotube bundles under hydrostatic pressure with optical spectroscopy. Double-walled carbon nanotube films were prepared from fullerene peapods and characterized by HRTEM and optical spectroscopy. In comparison to single-walled carbon nanotubes, the pressure-induced redshifts of the optical transitions in the outer tubes are significantly smaller below \sim10 GPa, demonstrating the enhanced mechanical stability due to the inner tube already at low pressures. Anomalies at the critical pressure Pd_d\approx12 GPa signal the onset of the pressure-induced deformation of the tubular cross-sections. The value of Pd_d is in very good agreement with theoretical predictions of the pressure-induced structural transitions in double-walled carbon nanotube bundles with similar average diameters.Comment: 6 pages, 4 figures; to appear in Phys. Rev.

    Relevanz suszeptibilitätsinduzierter geometrischer Fehlkodierungen für die Validität MR-basierter Knorpelvolumen- und -dickenmessungen im Kniegelenk - Relevance of susceptibility-induced geometrical distortion for the accuracy of MR-based cartilage volume and thickness measurement

    Get PDF
    The aim of the present study was to analyze the relevance of susceptibility-induced geometrical distortion to the accuracy of MR-based cartilage volume and thickness measurement in the human knee joint. Nine cadaveric knee joints were imaged in the sagittal plane with MRI at a resolution of a x 0.31 x 0.81 mm³, using a fat-suppressed gradient echo sequence, with a normal gradient orientation and also with the frequency- and phase-encoding directions changed. CT arthrographic data sets were then obtained. On the basis of 3-D constructions, we determined the cartilage volume and, with a 3-D minimal distance algorithm, the thickness distribution, of the patella, femur and tibia. Irrespective of the gradient orientation, good agreement was observed between MRI and CT arthrography in terms of cartilage volumes and maximum cartilage thickness. With a normal gradient orientation the volume was overestimated by 2.5 % in MRI, and 2.3 % when the gradients were changed. The maximum cartilage thickness was underestimated by 0.24 intervals (interval = 0.5 mm) with a normal gradient orientation, and by 0.22 intervals when the gradient orientation was changed. In none of the joint surfaces was a relevant difference between the two methods observed. It can be shown that, using high-resolution, fat-suppressed gradient-echo sequences - suseeptibility-induced geometrical distortion has no significant effect on the accuracy of KR-based cartilage volume and thickness measurements. MRI would therefore appear suitable for the design of patient-specific finite element models with the aim of analysing load transmission in diarthrodial joints and planning surgical interventions

    Biological Designer Self-Assembling Peptide Nanofiber Scaffolds Significantly Enhance Osteoblast Proliferation, Differentiation and 3-D Migration

    Get PDF
    A class of self-assembling peptide nanofiber scaffolds has been shown to be an excellent biological material for 3-dimension cell culture and stimulating cell migration into the scaffold, as well as for repairing tissue defects in animals. We report here the development of several peptide nanofiber scaffolds designed specifically for osteoblasts. We designed one of the pure self-assembling peptide scaffolds RADA16-I through direct coupling to short biologically active motifs. The motifs included osteogenic growth peptide ALK (ALKRQGRTLYGF) bone-cell secreted-signal peptide, osteopontin cell adhesion motif DGR (DGRGDSVAYG) and 2-unit RGD binding sequence PGR (PRGDSGYRGDS). We made the new peptide scaffolds by mixing the pure RAD16 and designer-peptide solutions, and we examined the molecular integration of the mixed nanofiber scaffolds using AFM. Compared to pure RAD16 scaffold, we found that these designer peptide scaffolds significantly promoted mouse pre-osteoblast MC3T3-E1 cell proliferation. Moreover, alkaline phosphatase (ALP) activity and osteocalcin secretion, which are early and late markers for osteoblastic differentiation, were also significantly increased. We demonstrated that the designer, self-assembling peptide scaffolds promoted the proliferation and osteogenic differentiation of MC3T3-E1. Under the identical culture medium condition, confocal images unequivocally demonstrated that the designer PRG peptide scaffold stimulated cell migration into the 3-D scaffold. Our results suggest that these designer peptide scaffolds may be very useful for promoting bone tissue regeneration

    Flow cytometric quantification of tumour endothelial cells; an objective alternative for microvessel density assessment

    Get PDF
    Assessment of microvessel density by immunohistochemical staining is subject to a considerable inter-observer variation, and this has led to variability in correlation between microvessel density and clinical outcome in different studies. In order to improve the method of microvessel density measurement in tumour biopsies, we have developed a rapid, objective and quantitative method using flow cytometry on frozen tissues. Frozen tissue sections of archival tumour material were enzymatically digested. The single-cell suspension was stained for CD31 and CD34 for flow cytometry. The number of endothelial cells was quantified using light scatter- and fluorescence-characteristics. Tumour endothelial cells were detectable in a single cell suspension, and the percentage of endothelial cells detected in 32 colon carcinomas correlated highly (r=0.84, P<0.001) with the immunohistochemical assessment of microvessel density. Flow cytometric endothelial cells quantification was found to be more sensitive especially at lower levels of immunohistochemical microvessel density measurement. The current method was found to be applicable for various tumour types and has the major advantage that it provides a retrospective and quantitative approach to the angiogenic potential of tumours

    Paramagnetic and fluorescent liposomes for target-specific imaging and therapy of tumor angiogenesis

    Get PDF
    Angiogenesis is essential for tumor growth and metastatic potential and for that reason considered an important target for tumor treatment. Noninvasive imaging technologies, capable of visualizing tumor angiogenesis and evaluating the efficacy of angiostatic therapies, are therefore becoming increasingly important. Among the various imaging modalities, magnetic resonance imaging (MRI) is characterized by a superb spatial resolution and anatomical soft-tissue contrast. Revolutionary advances in contrast agent chemistry have delivered versatile angiogenesis-specific molecular MRI contrast agents. In this paper, we review recent advances in the preclinical application of paramagnetic and fluorescent liposomes for noninvasive visualization of the molecular processes involved in tumor angiogenesis. This liposomal contrast agent platform can be prepared with a high payload of contrast generating material, thereby facilitating its detection, and is equipped with one or more types of targeting ligands for binding to specific molecules expressed at the angiogenic site. Multimodal liposomes endowed with contrast material for complementary imaging technologies, e.g., MRI and optical, can be exploited to gain important preclinical insights into the mechanisms of binding and accumulation at angiogenic vascular endothelium and to corroborate the in vivo findings. Interestingly, liposomes can be designed to contain angiostatic therapeutics, allowing for image-supervised drug delivery and subsequent monitoring of therapeutic efficacy

    Radiolabeled CCK/gastrin peptides for imaging and therapy of CCK2 receptor-expressing tumors

    Get PDF
    Cholecystokinin (CCK) receptors are overexpressed in numerous human cancers, like medullary thyroid carcinomas, small cell lung cancers and stromal ovarian cancers. The specific receptor-binding property of the endogenous ligands for these receptors can be exploited by labeling peptides with a radionuclide and using these as carriers to guide the radioactivity to the tissues that express the receptors. In this way, tumors can be visualized using positron emission tomography and single photon emission computed tomography imaging. A variety of radiolabeled CCK/gastrin-related peptides has been synthesized and characterized for imaging. All peptides have the C-terminal CCK receptor-binding tetrapeptide sequence Trp-Met-Asp-Phe-NH2 in common or derivatives thereof. This review focuses on the development and application of radiolabeled CCK/gastrin peptides for radionuclide imaging and radionuclide therapy of tumors expressing CCK receptors. We discuss both preclinical studies as well as clinical studies with CCK and gastrin peptides

    ‘In vivo’ optical approaches to angiogenesis imaging

    Get PDF
    In recent years, molecular imaging gained significant importance in biomedical research. Optical imaging developed into a modality which enables the visualization and quantification of all kinds of cellular processes and cancerous cell growth in small animals. Novel gene reporter mice and cell lines and the development of targeted and cleavable fluorescent “smart” probes form a powerful imaging toolbox. The development of systems collecting tomographic bioluminescence and fluorescence data enabled even more spatial accuracy and more quantitative measurements. Here we describe various bioluminescent and fluorescent gene reporter models and probes that can be used to specifically image and quantify neovascularization or the angiogenic process itself

    PARASO, a circum-Antarctic fully coupled ice-sheet–ocean–sea-ice–atmosphere–land model involving f.ETISh1.7, NEMO3.6, LIM3.6, COSMO5.0 and CLM4.5

    Full text link
    We introduce PARASO, a novel five-component fully coupled regional climate model over an Antarctic circumpolar domain covering the full Southern Ocean. The state-of-the-art models used are the fast Elementary Thermomechanical Ice Sheet model (f.ETISh) v1.7 (ice sheet), the Nucleus for European Modelling of the Ocean (NEMO) v3.6 (ocean), the Louvain-la-Neuve sea-ice model (LIM) v3.6 (sea ice), the COnsortium for Small-scale MOdeling (COSMO) model v5.0 (atmosphere) and its CLimate Mode (CLM) v4.5 (land), which are here run at a horizontal resolution close to . One key feature of this tool resides in a novel two-way coupling interface for representing ocean–ice-sheet interactions, through explicitly resolved ice-shelf cavities. The impact of atmospheric processes on the Antarctic ice sheet is also conveyed through computed COSMO-CLM–f.ETISh surface mass exchange. In this technical paper, we briefly introduce each model's configuration and document the developments that were carried out in order to establish PARASO. The new offline-based NEMO–f.ETISh coupling interface is thoroughly described. Our developments also include a new surface tiling approach to combine open-ocean and sea-ice-covered cells within COSMO, which was required to make this model relevant in the context of coupled simulations in polar regions. We present results from a 2000–2001 coupled 2-year experiment. PARASO is numerically stable and fully operational. The 2-year simulation conducted without fine tuning of the model reproduced the main expected features, although remaining systematic biases provide perspectives for further adjustment and development
    corecore