3,762 research outputs found

    Synthesis and late-stage functionalization of complex molecules through C-H fluorination and nucleophilic aromatic substitution.

    Get PDF
    We report the late-stage functionalization of multisubstituted pyridines and diazines at the position Ī± to nitrogen. By this process, a series of functional groups and substituents bound to the ring through nitrogen, oxygen, sulfur, or carbon are installed. This functionalization is accomplished by a combination of fluorination and nucleophilic aromatic substitution of the installed fluoride. A diverse array of functionalities can be installed because of the mild reaction conditions revealed for nucleophilic aromatic substitutions (S(N)Ar) of the 2-fluoroheteroarenes. An evaluation of the rates for substitution versus the rates for competitive processes provides a framework for planning this functionalization sequence. This process is illustrated by the modification of a series of medicinally important compounds, as well as the increase in efficiency of synthesis of several existing pharmaceuticals

    Iridium-Catalyzed Silylation of Five-Membered Heteroarenes: High Sterically Derived Selectivity from a Pyridyl-Imidazoline Ligand.

    Get PDF
    The steric effects of substituents on five-membered rings are less pronounced than those on six-membered rings because of the difference in bond angles. Thus, the regioselectivities of reactions of five-membered heteroarenes that occur with selectivities dictated by steric effects, such as the borylation of C-H bonds, have been poor in many cases. We report that the silylation of five-membered-ring heteroarenes occurs with high sterically derived regioselectivity when catalyzed by the combination of [Ir(cod)(OMe)]2 (cod=1,5-cyclooctadiene) and a phenanthroline ligand or a new pyridyl-imidazoline ligand that further increases the regioselectivity. The silylation reactions with these catalysts produce high yields of heteroarylsilanes from functionalization at the most sterically accessible C-H bonds of these rings under conditions that the borylation of C-H bonds with previously reported catalysts formed mixtures of products or products that are unstable. The heteroarylsilane products undergo cross-coupling reactions and substitution reactions with ipso selectivity to generate heteroarenes that bear halogen, aryl, and perfluoroalkyl substituents

    Palladium-Catalyzed Ī±-Arylation of Carboxylic Acids and Secondary Amides via a Traceless Protecting Strategy.

    Get PDF
    A novel traceless protecting strategy is presented for the long-standing challenge of conducting the palladium-catalyzed Ī±-arylation of carboxylic aids and secondary amides with aryl halides. Both of the presented coupling processes occur with a variety of carboxylic acids and amides and with a variety of aryl bromides containing a broad range of functional groups, including base-sensitive functionality like acyl, alkoxycarbonyl, nitro, cyano, and even hydroxyl groups. Five commercial drugs were prepared through this method in one step in 81-96% yield. Gram-scale synthesis of medication Naproxen and Flurbiprofen with low palladium loading further highlights the practical value of this method
    • ā€¦
    corecore