2,177 research outputs found

    Directed abelian algebras and their applications to stochastic models

    Full text link
    To each directed acyclic graph (this includes some D-dimensional lattices) one can associate some abelian algebras that we call directed abelian algebras (DAA). On each site of the graph one attaches a generator of the algebra. These algebras depend on several parameters and are semisimple. Using any DAA one can define a family of Hamiltonians which give the continuous time evolution of a stochastic process. The calculation of the spectra and ground state wavefunctions (stationary states probability distributions) is an easy algebraic exercise. If one considers D-dimensional lattices and choose Hamiltonians linear in the generators, in the finite-size scaling the Hamiltonian spectrum is gapless with a critical dynamic exponent z=Dz = D. One possible application of the DAA is to sandpile models. In the paper we present this application considering one and two dimensional lattices. In the one dimensional case, when the DAA conserves the number of particles, the avalanches belong to the random walker universality class (critical exponent στ=3/2\sigma_{\tau} = 3/2). We study the local densityof particles inside large avalanches showing a depletion of particles at the source of the avalanche and an enrichment at its end. In two dimensions we did extensive Monte-Carlo simulations and found στ=1.782±0.005\sigma_{\tau} = 1.782 \pm 0.005.Comment: 14 pages, 9 figure

    Complete spectrum of the infinite-UU Hubbard ring using group theory

    Full text link
    We present a full analytical solution of the multiconfigurational strongly-correlated mixed-valence problem corresponding to the NN-Hubbard ring filled with N−1N-1 electrons, and infinite on-site repulsion. While the eigenvalues and the eigenstates of the model are known already, analytical determination of their degeneracy is presented here for the first time. The full solution, including degeneracy count, is achieved for each spin configuration by mapping the Hubbard model into a set of Huckel-annulene problems for rings of variable size. The number and size of these effective Huckel annulenes, both crucial to obtain Hubbard states and their degeneracy, are determined by solving a well-known combinatorial enumeration problem, the necklace problem for N−1N-1 beads and two colors, within each subgroup of the CN−1C_{N-1} permutation group. Symmetry-adapted solution of the necklace enumeration problem is finally achieved by means of the subduction of coset representation technique [S. Fujita, Theor. Chim. Acta 76, 247 (1989)], which provides a general and elegant strategy to solve the one-hole infinite-UU Hubbard problem, including degeneracy count, for any ring size. The proposed group theoretical strategy to solve the infinite-UU Hubbard problem for N−1N-1 electrons, is easily generalized to the case of arbitrary electron count LL, by analyzing the permutation group CLC_L and all its subgroups.Comment: 31 pages, 4 figures. Submitte

    Thoracic involvement in generalised lymphatic anomaly (or lymphangiomatosis)

    Get PDF
    Generalised lymphatic anomaly (GLA), also known as lymphangiomatosis, is a rare disease caused by congenital abnormalities of lymphatic development. It usually presents in childhood but can also be diagnosed in adults. GLA encompasses a wide spectrum of clinical manifestations ranging from singleorgan involvement to generalised disease. Given the rarity of the disease, most of the information regarding it comes from case reports. To date, no clinical trials concerning treatment are available. This review focuses on thoracic GLA and summarises possible diagnostic and therapeutic approaches

    Closed timelike curves in superfluid 3^{3}He

    Get PDF
    It is shown that the curved spacetime induced in a thin film of superfluid 3^{3}He-A by the presence of symmetric vortices with the unbroken symmetry phase, admits the existence of closed timelike curves through which only superfluid clusters formed by anti-3^{3}He atoms can travel and violate causality.Comment: 7 pages, LaTex, to appear in Phys. Lett.

    Percolation on the average and spontaneous magnetization for q-states Potts model on graph

    Full text link
    We prove that the q-states Potts model on graph is spontaneously magnetized at finite temperature if and only if the graph presents percolation on the average. Percolation on the average is a combinatorial problem defined by averaging over all the sites of the graph the probability of belonging to a cluster of a given size. In the paper we obtain an inequality between this average probability and the average magnetization, which is a typical extensive function describing the thermodynamic behaviour of the model

    B polarization of the CMB from Faraday rotation

    Full text link
    We study the effect of Faraday rotation due to a homogeneous magnetic field on the polarization of the cosmic microwave background (CMB). Scalar fluctuations give rise only to parity-even E-type polarization of the CMB. However in the presence of a magnetic field, a non-vanishing parity-odd B-type polarization component is produced through Faraday rotation. We derive the exact solution for the E and B modes generated by scalar perturbations including the Faraday rotation effect of a uniform magnetic field, and evaluate their cross-correlations with temperature anisotropies. We compute the angular autocorrelation function of the B-modes in the limit that the Faraday rotation is small. We find that primordial magnetic fields of present strength around B0=10−9B_0=10^{-9}G rotate E-modes into B-modes with amplitude comparable to those due to the weak gravitational lensing effect at frequencies around ν=30\nu=30 GHz. The strength of B-modes produced by Faraday rotation scales as B0/ν2B_0/\nu^2. We evaluate also the depolarizing effect of Faraday rotation upon the cross correlation between temperature anisotropy and E-type polarization.Comment: 11 pages, 4 figures. Minor changes to match the published versio

    Weak-Lensing by Large-Scale Structure and the Polarization Properties of Distant Radio-Sources

    Get PDF
    We estimate the effects of weak lensing by large-scale density inhomogeneities and long-wavelength gravitational waves upon the polarization properties of electromagnetic radiation as it propagates from cosmologically distant sources. Scalar (density) fluctuations do not rotate neither the plane of polarization of the electromagnetic radiation nor the source image. They produce, however, an appreciable shear, which distorts the image shape, leading to an apparent rotation of the image orientation relative to its plane of polarization. In sources with large ellipticity the apparent rotation is rather small, of the order (in radians) of the dimensionless shear. The effect is larger at smaller source eccentricity. A shear of 1% can induce apparent rotations of around 5 degrees in radio sources with the smallest eccentricity among those with a significant degree of integrated linear polarization. We discuss the possibility that weak lensing by shear with rms value around or below 5% may be the cause for the dispersion in the direction of integrated linear polarization of cosmologically distant radio sources away from the perpendicular to their major axis, as expected from models for their magnetic fields. A rms shear larger than 5% would be incompatible with the observed correlation between polarization properties and source orientation in distant radio galaxies and quasars. Gravity waves do rotate both the plane of polarization as well as the source image. Their weak lensing effects, however, are negligible.Comment: 23 pages, 2 eps figures, Aastex 4.0 macros. Final version, as accepted by ApJ. Additional references and some changes in the introduction and conclusion

    A Search for the Fourth SM Family Fermions and E_6 Quarks at μ+μ−\mu ^{+}\mu ^{-} Colliders

    Full text link
    The potential of μ+μ−\mu ^{+}\mu ^{-} colliders to investigate the fourth SM family fermions predicted by flavour democracy has been analyzed. It is shown that muon colliders are advantageous for both pair production of fourth family fermions and resonance production of fourth family quarkonia. Also isosinglet quarks production at μ+μ−\mu ^{+}\mu ^{-} colliders has been investigated.Comment: 9 pages, 5 table

    Tax Administrations’ Capacity in Preventing Tax Evasion and Tax Avoidance

    Get PDF
    FdR – Publicaties zonder aanstelling Universiteit Leide
    • …
    corecore