339 research outputs found
Pre-scission neutron multiplicity associated with the dynamical process in superheavy mass region
The fusion-fission process accompanied by neutron emission is studied in the
superheavy-mass region on the basis of the fluctuation-dissipation model
combined with a statistical model. The calculation of the trajectory or the
shape evolution in the deformation space of the nucleus with neutron emission
is performed. Each process (quasi-fission, fusion-fission, and deep
quasi-fission processes) has a characteristic travelling time from the point of
contact of colliding nuclei to the scission point. These dynamical aspects of
the whole process are discussed in terms of the pre-scission neutron
multiplicity, which depends on the time spent on each process. We have
presented the details of the characteristics of our model calculation in the
reactions Ca+Pb and Ca+Pu, and shown how the
structure of the distribution of pre-scission neutron multiplicity depends on
the incident energy.Comment: 19 pages, 12 figures, Accepted for publication in J. Phys.
Analysis of fusion-fission dynamics by pre-scission neutron emission in Ni+Pb
We analyzed the experimental data of the pre-scission neutron multiplicity in
connection with fission fragments in the reaction Ni+Pb at the
incident energy corresponding to the excitation energy of compound nucleus
=185.9 MeV, which was performed by D\'{e}MoN group. The relation between
the pre-scission neutron multiplicity and each reaction process having
different reaction time is investigated. In order to study the fusion-fission
process accompanied by neutron emission, the fluctuation-dissipation model
combined with a statistical model is employed. It is found that the
fusion-fission process and the quasi-fission process are clearly distinguished
in correlation with the pre-scission neutron multiplicity.Comment: 11 figure
Quasifission and fusion-fission in massive nuclei reactions. Comparison of reactions leading to the Z=120 element
The yields of evaporation residues, fusion-fission and quasifission fragments
in the Ca+Sm and O+W reactions are analyzed
in the framework of the combined theoretical method based on the dinuclear
system concept and advanced statistical model. The measured yields of
evaporation residues for the Ca+Sm reaction can be well
reproduced. The measured yields of fission fragments are decomposed into
contributions coming from fusion-fission, quasifission, and fast-fission. The
decrease in the measured yield of quasifission fragments in
Ca+Sm at the large collision energies and the lack of
quasifission fragments in the Ca+Sm reaction are explained by
the overlap in mass-angle distributions of the quasifission and fusion-fission
fragments. The investigation of the optimal conditions for the synthesis of the
new element =120 (=302) show that the Cr+Cm reaction is
preferable in comparison with the Fe+Pu and Ni+U
reactions because the excitation function of the evaporation residues of the
former reaction is some orders of magnitude larger than that for the last two
reactions.Comment: 27 pages, 12 figures, submitted to Phys. Rev.
Structure of Be probed via secondary beam reactions
The low-lying level structure of the unbound neutron-rich nucleus Be
has been investigated via breakup on a carbon target of secondary beams of
B at 35 MeV/nucleon. The coincident detection of the beam velocity
Be fragments and neutrons permitted the invariant mass of the
Be+ and Be++ systems to be reconstructed. In the case of
the breakup of B, a very narrow structure at threshold was observed in
the Be+ channel. Contrary to earlier stable beam fragmentation
studies which identified this as a strongly interacting -wave virtual state
in Be, analysis here of the Be++ events demonstrated that
this was an artifact resulting from the sequential-decay of the
Be(2) state. Single-proton removal from B was found to
populate a broad low-lying structure some 0.70 MeV above the neutron-decay
threshold in addition to a less prominent feature at around 2.4 MeV. Based on
the selectivity of the reaction and a comparison with (0-3)
shell-model calculations, the low-lying structure is concluded to most probably
arise from closely spaced J=1/2 and 5/2 resonances
(E=0.400.03 and 0.85 MeV), whilst the broad
higher-lying feature is a second 5/2 level (E=2.350.14 MeV). Taken
in conjunction with earlier studies, it would appear that the lowest 1/2
and 1/2 levels lie relatively close together below 1 MeV.Comment: 14 pages, 13 figures, 2 tables. Accepted for publication in Physical
Review
Elements Discrimination in the Study of Super-Heavy Elements using an Ionization Chamber
Dedicated ionization chamber was built and installed to measure the energy
loss of very heavy nuclei at 2.7 MeV/u produced in fusion reactions in inverse
kinematics (beam of 208Pb). After going through the ionization chamber,
products of reactions on 12C, 18O targets are implanted in a Si detector. Their
identification through their alpha decay chain is ambiguous when their
half-life is short. After calibration with Pb and Th nuclei, the ionization
chamber signal allowed us to resolve these ambiguities. In the search for rare
super-heavy nuclei produced in fusion reactions in inverse or symmetric
kinematics, such a chamber will provide direct information on the nuclear
charge of each implanted nucleus.Comment: submitted to NIMA, 10 pages+4 figures, Latex, uses elsart.cls and
grahpic
Structure of 12Be: intruder d-wave strength at N=8
The breaking of the N=8 shell-model magic number in the 12Be ground state has
been determined to include significant occupancy of the intruder d-wave
orbital. This is in marked contrast with all other N=8 isotones, both more and
less exotic than 12Be. The occupancies of the 0 hbar omega neutron p1/2-orbital
and the 1 hbar omega, neutron d5/2 intruder orbital were deduced from a
measurement of neutron removal from a high-energy 12Be beam leading to bound
and unbound states in 11Be.Comment: 5 pages, 2 figure
Single-Proton Removal Reaction Study of 16B
The low-lying level structure of the unbound system B has been
investigated via single-proton removal from a 35 MeV/nucleon C beam. The
coincident detection of the beam velocity B fragment and neutron allowed
the relative energy of the in-flight decay of B to be reconstructed. The
resulting spectrum exhibited a narrow peak some 85 keV above threshold. It is
argued that this feature corresponds to a very narrow (100 keV)
resonance, or an unresolved multiplet, with a dominant + configuration which decays by d-wave neutron
emission.Comment: 16 pages, 5 figures, 1 table, submitted to Phys. Lett.
- …