530 research outputs found

    A closed expression for the UV-divergent parts of one-loop tensor integrals in dimensional regularization

    Full text link
    Starting from the general definition of a one-loop tensor N-point function, we use its Feynman parametrization to calculate the UV-divergent part of an arbitrary tensor coefficient in the framework of dimensional regularization. In contrast to existing recursion schemes, we are able to present a general analytic result in closed form that enables direct determination of the UV-divergent part of any one-loop tensor N-point coefficient independent from UV-divergent parts of other one-loop tensor N-point coefficients. Simplified formulas and explicit expressions are presented for A-, B-, C-, D-, E-, and F-functions.Comment: 19 pages (single column), the result of previous versions is further evaluated leading to a closed analytic expression for the UV-divergent part of an arbitrary one-loop tensor coefficient, title is modified accordingly, a sign error in the appendix (C_{00000000}) has been corrected, a mathematica notebook containing an implementation of the newly derived formula is attache

    Continuous non-perturbative regularization of QED

    Full text link
    We regularize in a continuous manner the path integral of QED by construction of a non-local version of its action by means of a regularized form of Dirac's δ\delta functions. Since the action and the measure are both invariant under the gauge group, this regularization scheme is intrinsically non-perturbative. Despite the fact that the non-local action converges formally to the local one as the cutoff goes to infinity, the regularized theory keeps trace of the non-locality through the appearance of a quadratic divergence in the transverse part of the polarization operator. This term which is uniquely defined by the choice of the cutoff functions can be removed by a redefinition of the regularized action. We notice that as for chiral fermions on the lattice, there is an obstruction to construct a continuous and non ambiguous regularization in four dimensions. With the help of the regularized equations of motion, we calculate the one particle irreducible functions which are known to be divergent by naive power counting at the one loop order.Comment: 23 pages, LaTeX, 5 Encapsulated Postscript figures. Improved and revised version, to appear in Phys. Rev.

    Methodological approaches to determining the marine radiocarbon reservoir effect

    Get PDF
    The marine radiocarbon reservoir effect is an offset in 14C age between contemporaneous organisms from the terrestrial environment and organisms that derive their carbon from the marine environment. Quantification of this effect is of crucial importance for correct calibration of the <sup>14</sup>C ages of marine-influenced samples to the calendrical timescale. This is fundamental to the construction of archaeological and palaeoenvironmental chronologies when such samples are employed in <sup>14</sup>C analysis. Quantitative measurements of temporal variations in regional marine reservoir ages also have the potential to be used as a measure of process changes within Earth surface systems, due to their link with climatic and oceanic changes. The various approaches to quantification of the marine radiocarbon reservoir effect are assessed, focusing particularly on the North Atlantic Ocean. Currently, the global average marine reservoir age of surface waters, R(t), is c. 400 radiocarbon years; however, regional values deviate from this as a function of climate and oceanic circulation systems. These local deviations from R(t) are expressed as +R values. Hence, polar waters exhibit greater reservoir ages (δR = c. +400 to +800 <sup>14</sup>C y) than equatorial waters (δR = c. 0 <sup>14</sup>C y). Observed temporal variations in δR appear to reflect climatic and oceanographic changes. We assess three approaches to quantification of marine reservoir effects using known age samples (from museum collections), tephra isochrones (present onshore/offshore) and paired marine/terrestrial samples (from the same context in, for example, archaeological sites). The strengths and limitations of these approaches are evaluated using examples from the North Atlantic region. It is proposed that, with a suitable protocol, accelerator mass spectrometry (AMS) measurements on paired, short-lived, single entity marine and terrestrial samples from archaeological deposits is the most promising approach to constraining changes over at least the last 5 ky BP

    Backward pion-nucleon scattering

    Get PDF
    A global analysis of the world data on differential cross sections and polarization asymmetries of backward pion-nucleon scattering for invariant collision energies above 3 GeV is performed in a Regge model. Including the NαN_\alpha, NγN_\gamma, Δδ\Delta_\delta and Δβ\Delta_\beta trajectories, we reproduce both angular distributions and polarization data for small values of the Mandelstam variable uu, in contrast to previous analyses. The model amplitude is used to obtain evidence for baryon resonances with mass below 3 GeV. Our analysis suggests a G39G_{39} resonance with a mass of 2.83 GeV as member of the Δβ\Delta_{\beta} trajectory from the corresponding Chew-Frautschi plot.Comment: 12 pages, 16 figure

    Embedding reflexivity within experiential qualitative psychology

    Get PDF
    In this article, it is argued that reflexivity is integral to experiential qualitative research in psychology. Reflexivity has been defined in many ways. Woolgar’s continuum of reflexivity though provides a useful gauge by which to judge whether a researcher is involved in simple reflection or reflexivity. The article demonstrates the benefits of adopting a reflexive attitude by presenting “challenge-to-competency.” The author’s encounter with Sarah will help illustrate the role of reflexivity both in data generation and in interpretative analysis. To close, it is proposed that reflexivity as hermeneutic reflection, with its grounding in hermeneutics and phenomenology, is a useful construct for guiding our engagement in reflexivity in experiential qualitative research

    Sociological and Communication-Theoretical Perspectives on the Commercialization of the Sciences

    Get PDF
    Both self-organization and organization are important for the further development of the sciences: the two dynamics condition and enable each other. Commercial and public considerations can interact and "interpenetrate" in historical organization; different codes of communication are then "recombined." However, self-organization in the symbolically generalized codes of communication can be expected to operate at the global level. The Triple Helix model allows for both a neo-institutional appreciation in terms of historical networks of university-industry-government relations and a neo-evolutionary interpretation in terms of three functions: (i) novelty production, (i) wealth generation, and (iii) political control. Using this model, one can appreciate both subdynamics. The mutual information in three dimensions enables us to measure the trade-off between organization and self-organization as a possible synergy. The question of optimization between commercial and public interests in the different sciences can thus be made empirical.Comment: Science & Education (forthcoming

    Historical Analysis: Tracking, Problematizing, and Reterritorializing Achievement and the Achievement Gap

    Get PDF
    For more than a century, state and federal governments and organizations have used different measures to determine if students and groups of students have achieved in a particular subject or grade level. While the construct of achievement is applied irrespective of student differences, this equal application turns out to be anything but equitable. In this chapter, we work to understand the way achievement plays out for Black students by deconstructing how the word achievement works. In doing so, we track the history of education, testing, and curriculum as it has been applied to Black youth and youth of color

    Consensus guidelines for the diagnosis and management of pyridoxine-dependent epilepsy due to α-aminoadipic semialdehyde dehydrogenase deficiency

    Get PDF
    Pyridoxine-dependent epilepsy (PDE-ALDH7A1) is an autosomal recessive condition due to a deficiency of α-aminoadipic semialdehyde dehydrogenase, which is a key enzyme in lysine oxidation. PDE-ALDH7A1 is a developmental and epileptic encephalopathy that was historically and empirically treated with pharmacologic doses of pyridoxine. Despite adequate seizure control, most patients with PDE-ALDH7A1 were reported to have developmental delay and intellectual disability. To improve outcome, a lysine-restricted diet and competitive inhibition of lysine transport through the use of pharmacologic doses of arginine have been recommended as an adjunct therapy. These lysine-reduction therapies have resulted in improved biochemical parameters and cognitive development in many but not all patients. The goal of these consensus guidelines is to re-evaluate and update the two previously published recommendations for diagnosis, treatment, and follow-up of patients with PDE-ALDH7A1. Members of the International PDE Consortium initiated evidence and consensus-based process to review previous recommendations, new research findings, and relevant clinical aspects of PDE-ALDH7A1. The guideline development group included pediatric neurologists, biochemical geneticists, clinical geneticists, laboratory scientists, and metabolic dieticians representing 29 institutions from 16 countries. Consensus guidelines for the diagnosis and management of patients with PDE-ALDH7A1 are provided. This article is protected by copyright. All rights reserved
    corecore