652 research outputs found

    Analysis and trade-off studies of large lightweight mirror structures

    Get PDF
    A candidate mirror, hexagonally lightweighted, is analyzed under various loadings using as complete a procedure as possible. Successive simplifications are introduced and compared to an original analysis. A model which is a reasonable compromise between accuracy and cost is found and is used for making trade-off studies of the various structural parameters of the lightweighted mirror

    Separable Structure of Many-Body Ground-State Wave Function

    Full text link
    We have investigated a general structure of the ground-state wave function for the Schr\"odinger equation for NN identical interacting particles (bosons or fermions) confined in a harmonic anisotropic trap in the limit of large NN. It is shown that the ground-state wave function can be written in a separable form. As an example of its applications, this form is used to obtain the ground-state wave function describing collective dynamics for NN trapped bosons interacting via contact forces.Comment: J. Phys. B: At. Mol. Opt. Phys. 33 (2000) (accepted for publication

    Field-induced magnetic transitions in the quasi-two-dimensional heavy-fermion antiferromagnets Ce_{n}RhIn_{3n+2} (n=1 or 2)

    Full text link
    We have measured the field-dependent heat capacity in the tetragonal antiferromagnets CeRhIn5_{5} and Ce2_{2}RhIn8_{8}, both of which have an enhanced value of the electronic specific heat coefficient γ∼400\gamma \sim 400 mJ/mol-Ce K2^{2} above TNT_{N}. For T<TN,T<T_{N}, the specific heat data at zero applied magnetic field are consistent with the existence of an anisotropic spin-density wave opening a gap in the Fermi surface for CeRhIn5,_{5}, while Ce2_{2}RhIn8_{8} shows behavior consistent with a simple antiferromagnetic magnon. From these results, the magnetic structure, in a manner similar to the crystal structure, appears more two-dimensional in CeRhIn5_{5} than in Ce2_{2}RhIn8_{8} where only about 12% of the Fermi surface remains ungapped relative to 92% for Ce2_{2}RhIn8_{8}. When B∣∣c,B||c, both compounds behave in a manner expected for heavy fermion systems as both TNT_{N} and the electronic heat capacity decrease as field is applied. When the field is applied in the tetragonal basal plane (B∣∣aB||a), CeRhIn5_{5} and Ce2_{2}RhIn8_{8} have very similar phase diagrams which contain both first- and second-order field-induced magnetic transitions .Comment: 15 pages, 4 figure

    What Influences the Diffusion of Grassroots Innovations for Sustainability? Investigating Community Currency Niches

    Get PDF
    Community action for sustainability is a promising site of socio-technical innovation. Here we test the applicability of co-evolutionary niche theories of innovation diffusion (Strategic Niche Management, SNM) to the context of ‘grassroots innovations’. We present new empirical findings from an international study of 12 community currency niches (such as LETS, time banks, local currencies). These are parallel systems of exchange, designed to operate alongside mainstream money, meeting additional sustainability needs. Our findings confirm SNM predictions that niche-level activity correlates with diffusion success, but we highlight additional or confounding factors, and how niche theories might be adapted to better fit civil-society innovations. In so doing, we develop a model of grassroots innovation niche diffusion which builds on existing work and tailors it to this specific context. The paper concludes with a series of theoretically-informed recommendations for practitioners and policymakers to support the development and potential of grassroots innovations

    Charge-Doping driven Evolution of Magnetism and non-Fermi-Liquid Behavior in the Filled Skutterudite CePt4Ge12-xSbx

    Full text link
    The filled-skutterudite compound CePt4Ge12 is situated close to the border between intermediate-valence of Ce and heavy-fermion behavior. Substitution of Ge by Sb drives the system into a strongly correlated and ultimately upon further increasing the Sb concentration into an antiferromagnetically ordered state. Our experiments evidence a delicate interplay of emerging Kondo physics and the formation of a local 4f moment. An extended non-Fermi-liquid region, which can be understood in the framework of a Kondo-disorder model, is observed. Band-structure calculations support the conclusion that the physical properties are governed by the interplay of electron supply via Sb substitution and the concomitant volume effects.Comment: 5 pages, 3 Figur

    In Situ Surface Studies of Site-Isolated Hydrogenation Catalysts – The Intermetallic Compound PdGa

    Get PDF
    Selective acetylene hydrogenation is an important method for removing traces of acetylene in the ethylene feed for the production of polyethylene. Typical catalysts, like Pd dispersed on metal oxides are widely used for this reaction and show a limited selectivity and long-term stability. This can be attributed to the presence of active-sites ensembles on the catalyst surface. This drawback can be overcome by using the intermetallic compound PdGa which possesses palladium atoms in the crystal structure well isolated from each other by a gallium shell. PdGa shows higher selectivity and increased long-term stability compared to the commercial catalysts, including PdAg alloys. In the present work the surface of the intermetallic compound PdGa was probed by in situ XPS as well as CO adsorption using FTIR spectroscopy. The XPS investigation before hydrogenation revealed a significant modification of the Pd electronic state in the intermetallic compound compared to Pd metal: the Pd3d5/2 peak is shifted by 1 eV to higher binding energy. In situ XPS measurements, performed at ~1 mbar pressure, showed a high stability of the Pd surface states without appearance of any additional components or significant shifts of the Pd3d5/2 peak when applying the reactive atmosphere and temperature (1.0 mbar of H2 + 0.1 mbar of C2H2 at 120 ºC). This is in contrast to Pd metal for which the formation of an additional Pd component during alkyne hydrogenation was detected. Investigation of carbon and palladium depth profiles for PdGa indicates the absence of a subsurface carbon-containing phase, distinguishing this material decidedly from metallic palladium catalysts. The adsorption of CO on the PdGa compound at room temperature results in the appearance of only one band with a maximum at 2047 cm-1, which corresponds to linear Pd–CO carbonyls. It should be mentioned that the observed band (2047 cm–1) is shifted to lower wavenumbers compared to the respective CO (on-top) species forming upon adsorption on metallic palladium (2100-2080 cm–1), which is an indication for the modification of the Pd electronic states by covalent bonding in the investigated intermetallic compound. The absence of bands due to bridged carbonyls in the observed spectra and the fact that the observed band is not coverage dependent indicated that the active sites in PdGa are really isolated. Characterization of PdGa by FTIR and in situ XPS revealed high surface stability during the reaction of acetylene hydrogenation and confirms the isolation of the active Pd site on the surface. In combination with modified electronic Pd states due to covalent bonding in the intermetallic compound it leads to superior catalytic properties like high selectivity and long-term stability during the partial hydrogenation of acetylene

    In Situ Studies of Site-Isolated Hydrogenation Catalysts – The Intermetallic Compound PdGa

    Get PDF
    Selective acetylene hydrogenation is an important method for removing traces of acetylene in the ethylene feed for the production of polyethylene. Typical catalysts show a limited selectivity and long-term stability. This can be attributed to the presence of active-site ensembles. This drawback can be overcome by using the intermetallic compound PdGa which possesses palladium atoms in the crystal structure well isolated by a gallium shell. PdGa shows higher selectivity and increased long-term stability compared to commercial catalysts. The XPS investigation before the reaction revealed a significant modification of the Pd electronic state in the intermetallic compound compared to Pd metal: the Pd3d5/2 peak is shifted by 1 eV to higher binding energy. In situ XPS measurements showed a high stability of the Pd surface states without appearance of any additional components or significant shifts of the Pd3d5/2 peak when applying the reactive atmosphere and temperature (1.0 mbar H2 0.1 mbar C2H2 at 120 ºC). This is in contrast to Pd metal for which the formation of an additional Pd component during alkyne hydrogenation was reported recently. The adsorption of CO on PdGa at room temperature results in the appearance of only one band with a maximum at 2047 cm-1, which should correspond to linearly bound CO (Pd–CO). It should be mentioned that the observed band (2047 cm–1) is shifted to lower wavenumbers compared to the respective CO (on-top) species forming upon adsorption on metallic palladium (2100-2080 cm–1), which may be an indication for the modification of the Pd electronic states by covalent bonding in the investigated intermetallic compound. The absence of bands due to bridged carbonyls in the spectra and the fact that the observed band is not coverage dependent indicates that the active sites in PdGa are really isolated. Characterization of PdGa revealed high surface stability during the hydrogenation of acetylene and confirms the isolation of the active Pd sites on the surface. In combination with the modified electronic Pd states – perhaps due to the covalent bonding – it leads to superior catalytic properties high selectivity and long-term stability
    • …
    corecore