79 research outputs found

    Statistical physics of language dynamics

    Get PDF
    Language dynamics is a rapidly growing field that focuses on all processes related to the emergence, evolution, change and extinction of languages. Recently, the study of self-organization and evolution of language and meaning has led to the idea that a community of language users can be seen as a complex dynamical system, which collectively solves the problem of developing a shared communication framework through the back-and-forth signaling between individuals. We shall review some of the progress made in the past few years and highlight potential future directions of research in this area. In particular, the emergence of a common lexicon and of a shared set of linguistic categories will be discussed, as examples corresponding to the early stages of a language. The extent to which synthetic modeling is nowadays contributing to the ongoing debate in cognitive science will be pointed out. In addition, the burst of growth of the web is providing new experimental frameworks. It makes available a huge amount of resources, both as novel tools and data to be analyzed, allowing quantitative and large-scale analysis of the processes underlying the emergence of a collective information and language dynamics

    HRS1 Acts as a Negative Regulator of Abscisic Acid Signaling to Promote Timely Germination of Arabidopsis Seeds

    Get PDF
    In this work, we conducted functional analysis of Arabidopsis HRS1 gene in order to provide new insights into the mechanisms governing seed germination. Compared with wild type (WT) control, HRS1 knockout mutant (hrs1-1) exhibited significant germination delays on either normal medium or those supplemented with abscisic acid (ABA) or sodium chloride (NaCl), with the magnitude of the delay being substantially larger on the latter media. The hypersensitivity of hrs1-1 germination to ABA and NaCl required ABI3, ABI4 and ABI5, and was aggravated in the double mutant hrs1-1abi1-2 and triple mutant hrs1-1hab1-1abi1-2, indicating that HRS1 acts as a negative regulator of ABA signaling during seed germination. Consistent with this notion, HRS1 expression was found in the embryo axis, and was regulated both temporally and spatially, during seed germination. Further analysis showed that the delay of hrs1-1 germination under normal conditions was associated with reduction in the elongation of the cells located in the lower hypocotyl (LH) and transition zone (TZ) of embryo axis. Interestingly, the germination rate of hrs1-1 was more severely reduced by the inhibitor of cell elongation, and more significantly decreased by the suppressors of plasmalemma H+-ATPase activity, than that of WT control. The plasmalemma H+-ATPase activity in the germinating seeds of hrs1-1 was substantially lower than that exhibited by WT control, and fusicoccin, an activator of this pump, corrected the transient germination delay of hrs1-1. Together, our data suggest that HRS1 may be needed for suppressing ABA signaling in germinating embryo axis, which promotes the timely germination of Arabidopsis seeds probably by facilitating the proper function of plasmalemma H+-ATPase and the efficient elongation of LH and TZ cells

    The Arabidopsis ABA-Activated Kinase OST1 Phosphorylates the bZIP Transcription Factor ABF3 and Creates a 14-3-3 Binding Site Involved in Its Turnover

    Get PDF
    indicates that members of the Snf1-Related Kinases 2 family (SnRK2) are essential in mediating various stress-adaptive responses. Recent reports have indeed shown that one particular member, OPEN STOMATA (OST)1, whose kinase activity is stimulated by the stress hormone abscisic acid (ABA), is a direct target of negative regulation by the core ABA co-receptor complex composed of PYR/PYL/RCAR and clade A Protein Phosphatase 2C (PP2C) proteins. and that phospho-T451 is important for stabilization of ABF3. on T451 to create a 14-3-3 binding motif. In a wider physiological context, we propose that the long term responses to ABA that require sustained gene expression is, in part, mediated by the stabilization of ABFs driven by ABA-activated SnRK2s

    Experimental Aspects of Synthesis

    Full text link
    We discuss the problem of experimentally evaluating linear-time temporal logic (LTL) synthesis tools for reactive systems. We first survey previous such work for the currently publicly available synthesis tools, and then draw conclusions by deriving useful schemes for future such evaluations. In particular, we explain why previous tools have incompatible scopes and semantics and provide a framework that reduces the impact of this problem for future experimental comparisons of such tools. Furthermore, we discuss which difficulties the complex workflows that begin to appear in modern synthesis tools induce on experimental evaluations and give answers to the question how convincing such evaluations can still be performed in such a setting.Comment: In Proceedings iWIGP 2011, arXiv:1102.374

    Zinc accumulation and distribution over tissues in Noccaea сaerulescens in nature and in hydroponics:a comparison

    No full text
    Aims: Zinc distribution at the tissue level is studied almost exclusively in lab-grown plants. It is essential to establish to what extent the patterns observed in lab-grown plants are corresponding with those in nature. To this end, we compared Zn localization in Noccaea caerulescens growing in its natural environment, a zinc/lead mine tailing, with that in hydroponically grown plants of the same origin. Methods: Zinc concentrations in plants and soil were determined by flame AAS and Zn localization in leaf tissues was studied using Zn indicators Zincon and Zinpyr-1. Results: The mean Zn concentration in plants at the mine tailings was around 15,000 mg/kg DW, which corresponded well with the Zn concentration in the leaves of plants grown at 1600 μM Zn in the nutrient solution. The Zn distribution patterns in leaves of plants sampled from the mine and plants grown in hydroponics were identical. Zn-dependent staining was the most intensive in water-storage epidermal cells, guard cells and vascular bundles, and less intensive in subsidiary and mesophyll cells. Conclusions: Zinc distribution in hydroponically grown plants is representative for plants in nature. Preferential Zn sequestration in leaves, particularly in water-storage epidermal cells, restricts metal accumulation in mesophyll and contributes to Zn hypertolerance

    Identification of centrosomal proteins in a human lymphoblastic cell line.

    No full text
    Highly enriched preparations of centrosomes from human T-lymphoblasts KE 37 were analyzed for their protein content. The specific pattern of polypeptides was characterized by an abundant subset of high mol. wt proteins and a major group of proteins with mol. wt ranging from 50 to 65 kd. Several immunoreactive proteins were identified, using a rabbit serum spontaneously reacting with human centrosomes. They include a family of high mol. wt ranging from 180 to 250 kd, a 130-kd protein and a 60-65 kd doublet. These antigens have the following properties: they are localized within the pericentriolar material; their abundance, as judged by centrosome labelling, changes significantly during the cell cycle, the maximum being observed at the pole of the metaphasic spindle; in Taxol-treated cells where the centrosome is no longer acting as a nucleating center, they redistribute at one end of the microtubule arrays in both mitotic and interphasic cells, as expected for nucleating, or capping, proteins. All these properties are compatible with their involvement in microtubule nucleation
    corecore