2,407 research outputs found

    High-resolution spectroscopy of triplet states of Rb2 by femtosecond pump-probe photoionization of doped helium nanodroplets

    Full text link
    The dynamics of vibrational wave packets in triplet states of rubidium dimers (Rb2) formed on helium nanodroplets are studied using femtosecond pump-probe photoionization spectroscopy. Due to fast desorption of the excited Rb2 molecules off the droplets and due to their low internal temperature, wave packet oscillations can be followed up to very long pump-probe delay times >1.5ns. In the first excited triplet state (1)^3\Sigma_g^+, full and fractional revivals are observed with high contrast. Fourier analysis provides high-resolution vibrational spectra which are in excellent agreement with ab initio calculations

    A new perspective on the irregular satellites of Saturn - II Dynamical and physical origin

    Full text link
    The origin of the irregular satellites of the giant planets has been long debated since their discovery. Their dynamical features argue against an in-situ formation suggesting they are captured bodies, yet there is no global consensus on the physical process at the basis of their capture. In this paper we explore the collisional capture scenario, where the actual satellites originated from impacts occurred within Saturn's influence sphere. By modeling the inverse capture problem, we estimated the families of orbits of the possible parent bodies and the specific impulse needed for their capture. The orbits of these putative parent bodies are compared to those of the minor bodies of the outer Solar System to outline their possible region of formation. Finally, we tested the collisional capture hypothesis on Phoebe by taking advantage of the data supplied by Cassini on its major crater, Jason. Our results presented a realistic range of solutions matching the observational and dynamical data.Comment: 26 Pages, 21 Figure

    Cooling dynamics of a dilute gas of inelastic rods: a many particle simulation

    Full text link
    We present results of simulations for a dilute gas of inelastically colliding particles. Collisions are modelled as a stochastic process, which on average decreases the translational energy (cooling), but allows for fluctuations in the transfer of energy to internal vibrations. We show that these fluctuations are strong enough to suppress inelastic collapse. This allows us to study large systems for long times in the truely inelastic regime. During the cooling stage we observe complex cluster dynamics, as large clusters of particles form, collide and merge or dissolve. Typical clusters are found to survive long enough to establish local equilibrium within a cluster, but not among different clusters. We extend the model to include net dissipation of energy by damping of the internal vibrations. Inelatic collapse is avoided also in this case but in contrast to the conservative system the translational energy decays according to the mean field scaling law, E(t)\propto t^{-2}, for asymptotically long times.Comment: 10 pages, 12 figures, Latex; extended discussion, accepted for publication in Phys. Rev.

    Collision of One-Dimensional Nonlinear Chains

    Full text link
    We investigate one-dimensional collisions of unharmonic chains and a rigid wall. We find that the coefficient of restitution (COR) is strongly dependent on the velocity of colliding chains and has a minimum value at a certain velocity. The relationship between COR and collision velocity is derived for low-velocity collisions using perturbation methods. We found that the velocity dependence is characterized by the exponent of the lowest unharmonic term of interparticle potential energy

    Field water dynamics in integrated systems in the Brazilian.

    Get PDF
    Agroforestry systems were established as a viable option for Brazilian farmers in recent decades. Shading is expected to affect the system?s microclimate and thus it is likely to alter water fluxes to the atmosphere via evapotranspiration. In this study we measured the evapotranspiration (ET) with micro-lysimeters in four different treatments as a proxy for different land use systems at EMBRAPA Beef Cattle, the Brazilian Agricultural Research Corporation, located in Campo Grande-MS, Brasil. The four treatments are: Integrated systems with rows of Eucalypt (Eucalyptus urograndis) trees (ICLF), integrated systems without Eucalypt trees (ICL), continuous pasture (CP) and native Cerrado (Savannah) vegetation. In the ICLF and ICL plots Bracchiaria brizantha was planted and in the CP plots Brachiaria decumbens. To measure the evapotranspiration lysimeters (diameter of 10 cm and a depth of 20 cm) were inserted into the ground and weighed daily during a period of 8 weeks. Within the ICLF systems, measurements were conducted in three different distances to the tree rows. In the treatments without trees the lysimeters were distributed randomly. Results were linked to data from the microclimate, i.e. wind speed, air humidity, and global radiation
    • …
    corecore