771 research outputs found

    The China Connection: U.S. Policy and the People\u27s Republic of China

    Get PDF

    National Strategies and Japan\u27s Northern Territories

    Get PDF
    History has vividly documented that the stability of Northeast Asia depends on the condition of Russo-Japanese relations. Russia and Japan share a long, turbulent record of cultural, economic, and political rivalry. Moreover, the two countries have fought each other four times in the last eighty years; the most recent in the latter stages of World War Two, and yet, Japan still has not signed a peace treaty with the Soviet Union

    Gravitational Radiation from First-Order Phase Transitions

    Full text link
    It is believed that first-order phase transitions at or around the GUT scale will produce high-frequency gravitational radiation. This radiation is a consequence of the collisions and coalescence of multiple bubbles during the transition. We employ high-resolution lattice simulations to numerically evolve a system of bubbles using only scalar fields, track the anisotropic stress during the process and evolve the metric perturbations associated with gravitational radiation. Although the radiation produced during the bubble collisions has previously been estimated, we find that the coalescence phase enhances this radiation even in the absence of a coupled fluid or turbulence. We comment on how these simulations scale and propose that the same enhancement should be found at the Electroweak scale; this modification should make direct detection of a first-order electroweak phase transition easier.Comment: 7 pages, 7 figure

    Design and development of a low temperature, inductance based high frequency ac susceptometer

    Get PDF
    We report on the development of an induction based low temperature high frequency ac susceptometer capable of measuring at frequencies up to 3.5 MHz and at temperatures between 2 K and 300 K. Careful balancing of the detection coils and calibration have allowed a sample magnetic moment resolution of 5×10−10Am25\times10^{-10} Am^2 at 1 MHz. We will discuss the design and characterization of the susceptometer, and explain the calibration process. We also include some example measurements on the spin ice material CdEr2_2S4_4 and iron oxide based nanoparticles to illustrate functionality

    Applications in Bioastronautics and Bioinformatics: Early Radiation Cataracts Detected by Noninvasive, Quantitative, and Remote Means

    Get PDF
    Human exploration of Mars is a key goal in NASA's exploration planning in the next 20 years. Maintaining crew health and good vision is certainly an important aspect of achieving a successful mission. Continuous radiation exposure is a risk factor for radiation-induced cataracts in astronauts because radiation exposure in space travel has the potential of accelerating the aging process (ref. 1). A patented compact device (ref. 2) based on the technique of dynamic light scattering (DLS) was designed for monitoring an astronaut's ocular health during long-duration space travel. This capability of early diagnosis, unmatched by any other clinical technique in use today, may enable prompt initiation of preventive/curative therapy. An Internet web-based system integrating photon correlation data and controlling the hardware to monitor cataract development in vivo at a remote site in real time (teleophthalmology) is currently being developed. The new technology detects cataracts very early (at the molecular level). Cataract studies onboard the International Space Station will be helpful in quantifying any adverse effect of radiation to ocular health. The normal lens in a human eye, situated behind the cornea, is a transparent tissue. It contains 35 wt % protein and 65 wt % water. Aging, disease (e.g., diabetes), smoking, dehydration, malnutrition, and exposure to ultraviolet light and ionizing radiation can cause agglomeration of the lens proteins. Protein aggregation can take place anywhere in the lens, causing lens opacity. The aggregation and opacification could produce nuclear (central portion of the lens) or cortical (peripheral) cataracts. Nuclear and posterior subcapsular (the membrane's capsule surrounds the whole lens) cataracts, being on the visual optical axis of the eye, cause visual impairment that can finally lead to blindness. The lens proteins, in their native state, are small in size. As a cataract develops, this size grows from a few nanometers (transparent) to several micrometers (cloudy). Ansari and Datiles have shown that DLS can detect cataracts at least two to three orders of magnitude earlier noninvasively and quantitatively than the best imaging (Scheimpflug) techniques in clinical use today (ref. 3)

    GLUTAREDOXIN 2 (GRX2) KNOCKOUT INCREASES SENSITIVITY TO OXIDATIVE STRESS IN MOUSE LENS EPITHELIAL CELLS

    Get PDF
    Glutaredoxin belongs to the oxidoreductase family with cytosolic glutaredoxin 1 (Grx1) and mitochondrial gluraredoxin 2 (Grx2) isoforms. Of the two isozymes, the function of Grx2 is not well understood. This paper studied the effect of Grx2 deletion on cellular function using primary lens epithelial cell cultures isolated from Grx2 gene knockout (KO) and wild type (WT) mice. We found that both cell types showed similar growth patterns and morphology, and comparable mitochondrial glutathione pool and complex I activity. Cells with deleted Grx2 did not show affected Grx1 or thioredoxin (Trx) expression but exhibited high sensitivity to oxidative stress. Under treatment of H2O2, the KO cells showed less viability, higher membrane leakage, enhanced ATP loss and complex I inactivation, and weakened ability to detoxify H2O2 in comparison with that of the WT cells. The KO cells had higher glutathionylation in the mitochondrial proteins, particularly the 75-kDa subunit of complex I. Recombinant Grx2 deglutathionylated complex I, and restored most of its activity. We conclude that Grx2 has a function to protect cells against H2O2-induced injury via its peroxidase and dethiolase activities; particularly, Grx2 prevents complex I inactivation and preserves mitochondrial function

    Researching the Aftermath of Slavery in Mainland East Africa: Methodological, Ethical, and Practical Challenges

    Get PDF
    This article examines ethical, practical, and methodological challenges in researching the aftermath of slavery in continental East Africa away from the coastal plantation belt. Interest in post-slavery there is recent and inspired by the apparent contrast with West Africa, where the issue is much more salient. The article explains this silence by highlighting politically-motivated avoidance of the issue in colonial sources and the preference of post-colonial historians for ‘useful’ pasts. Further, it questions the balance of successful integration and continuing marginalization reflected in the apparent obsolescence of slavery. It argues that tracing the trajectories of ex-slaves requires attention to all forms of social inequality and dependency, to the potential status implications for informants of speaking about slavery, and to the variety of terms and fields of meaning relevant to freedom, unfreedom and dependency. Recent research in this vein shows that slave antecedents remain a matter of aibu, shame, and that ex-slaves’ disappearance as a social category took lifelong efforts on their part. While the social valence of slave antecedents is relatively limited in mainland East Africa, slavery remains a problematic and painful heritage that demands great circumspection by researchers

    Homological Error Correction: Classical and Quantum Codes

    Get PDF
    We prove several theorems characterizing the existence of homological error correction codes both classically and quantumly. Not every classical code is homological, but we find a family of classical homological codes saturating the Hamming bound. In the quantum case, we show that for non-orientable surfaces it is impossible to construct homological codes based on qudits of dimension D>2D>2, while for orientable surfaces with boundaries it is possible to construct them for arbitrary dimension DD. We give a method to obtain planar homological codes based on the construction of quantum codes on compact surfaces without boundaries. We show how the original Shor's 9-qubit code can be visualized as a homological quantum code. We study the problem of constructing quantum codes with optimal encoding rate. In the particular case of toric codes we construct an optimal family and give an explicit proof of its optimality. For homological quantum codes on surfaces of arbitrary genus we also construct a family of codes asymptotically attaining the maximum possible encoding rate. We provide the tools of homology group theory for graphs embedded on surfaces in a self-contained manner.Comment: Revtex4 fil
    • …
    corecore