187 research outputs found

    Temperature modulates the response of the thermophilous sea urchin Arbacia lixula early life stages to CO2-driven acidification

    Get PDF
    The increasing abundances of the thermophilous black sea urchin Arbacia lixula in the Mediterranean Sea are attributed to the Western Mediterranean warming. However, few data are available on the potential impact of this warming on A. lixula in combination with other global stressors such as ocean acidification. The aim of this study is to investigate the interactive effects of increased temperature and of decreased pH on fertilization and early development of A. lixula. This was tested using a fully crossed design with four temperatures (20, 24, 26 and 27 C) and two pH levels (pHNBS 8.2 and 7.9). Temperature and pH had no significant effect on fertilization and larval survival (2d) for temperature <27 C. At 27 C, the fertilization success was very low (<1%) and all larvae died within 2d. Both temperature and pH had effects on the developmental dynamics. Temperature appeared to modulate the impact of decreasing pH on the % of larvae reaching the pluteus stage leading to a positive effect (faster growth compared to pH 8.2) of low pH at 20 C, a neutral effect at 24 C and a negative effect (slower growth) at 26 C. These results highlight the importance of considering a range of temperatures covering today and the future environmental variability in any experiment aiming at studying the impact of ocean acidificatio

    The rise of thermophilic sea urchins and the expansion of barren grounds in the Mediterranean Sea

    Get PDF
    Recent ecological studies have shown a strong relation between temperature, echinoids and their grazing effects on macro-algal communities. In this study, we speculate that climate warming may result in an increasingly favourable environment for the reproduction and development of the sea urchin Arbacia lixula. The relationship between increased A. lixula density and the extent of barren grounds in the Mediterranean Sea is also discussed

    Metallothionein gene family in the sea urchin Paracentrotus lividus: Gene structure, differential expression and phylogenetic analysis

    Get PDF
    Metallothioneins (MT) are small and cysteine-rich proteins that bind metal ions such as zinc, copper, cadmium, and nickel. In order to shed some light on MT gene structure and evolution, we cloned seven Paracentrotus lividus MT genes, comparing them to Echinodermata and Chordata genes. Moreover, we performed a phylogenetic analysis of 32 MTs from different classes of echinoderms and 13 MTs from the most ancient chordates, highlighting the relationships between them. Since MTs have multiple roles in the cells, we performed RT-qPCR and in situ hybridization experiments to understand better MT functions in sea urchin embryos. Results showed that the expression of MTs is regulated throughout development in a cell type-specific manner and in response to various metals. The MT7 transcript is expressed in all tissues, especially in the stomach and in the intestine of the larva, but it is less metal-responsive. In contrast, MT8 is ectodermic and rises only at relatively high metal doses. MT5 and MT6 expression is highly stimulated by metals in the mesenchyme cells. Our results suggest that the P. lividus MT family originated after the speciation events by gene duplications, evolving developmental and environmental sub-functionalization

    An intronic cis-regulatory element is crucial for the alpha tubulin Pl-Tuba1a gene activation in the ciliary band and animal pole neurogenic domains during sea urchin development

    Get PDF
    In sea urchin development, structures derived from neurogenic territory control the swimming and feeding responses of the pluteus as well as the process of metamorphosis. We have previously isolated an alpha tubulin family member of Paracentrotus lividus (Pl-Tuba1a, formerly known as Pl-Talpha2) that is specifically expressed in the ciliary band and animal pole neurogenic domains of the sea urchin embryo. In order to identify cis-regulatory elements controlling its spatio-temporal expression, we conducted gene transfer experiments, transgene deletions and site specific mutagenesis. Thus, a genomic region of about 2.6 Kb of Pl-Tuba1a, containing four Interspecifically Conserved Regions (ICRs), was identified as responsible for proper gene expression. An enhancer role was ascribed to ICR1 and ICR2, while ICR3 exerted a pivotal role in basal expression, restricting Tuba1a expression to the proper territories of the embryo. Additionally, the mutation of the forkhead box consensus sequence binding site in ICR3 prevented Pl-Tuba1a expression

    Chemical speciation of organic matter in natural waters. Interaction of nucleotide 5' mono-, di- and triphosphates with major components of seawater

    Get PDF
    AbstractThe interactions of nucleotide 5' mono-, di- and triphosphates in a multicomponent ionic medium simulating the macro-composition of seawater (Na+, K+, Ca2+, Mg2+, Cl-, SO42-, Synthetic Sea Water, SSW) have been investigated at different ionic strengths and at T= 25°C. A chemical speciation model, according to which all the internal interactions between the components of the ionic medium are taken into account, was applied to determine the effective formation constants of species in the nucleotide-seawater system. The results were compared to protonation parameters calculated from single electrolyte systems. A simpler model (SSW considered as a single salt BA, with Bz+ and Az-), representative of the cation (Na+, K+, Ca2+, Mg2+) and anion (Cl-, SO42-) macro-components of seawater respectively, was also used to calculate the overall complexing ability of the seawater salt towards all the systems here investigated

    Functional traits of two co-occurring sea urchins across a barren/forest patch system

    Get PDF
    Temperate rocky reefs may occur in two alternative states (coralline barrens and erect algal forests), whose formation and maintenance are often determined by sea urchin grazing. The two sea urchin species Paracentrotus lividus and Arbacia lixula are considered to play a similar ecological role despite their differing morphological traits and diets. The patchy mosaic areas of Ustica Island, Italy, offer an ideal environment in which to study differences in the performance of P. lividus and A. lixula in barren versus forest states. Results show that the two sea urchin species differ in diet, trophic position, grazing adaptation, movement ability and fitness in both barren and forest patches. We confirmed herbivory in P. lividus and omnivory with a strong tendency to carnivory in A. lixula. When the sea urchin escape response to a predator was triggered, P. lividus responded faster in barren and forest patches. Forest patch restricted movement, especially in A. lixula (velocity in barren ≈10-fold greater than in forest). A large Aristotle's lantern, indicative of durophagy, confirmed adaptation of A. lixula to barren state

    Hsp56 protein and mRNA distribution in normal and stressed P.lividus embryos

    Get PDF
    It was previously demonstrated that Paracentrotus lividus Hsp56 mitochondrial chaperonin is con- stitutively expressed during development, that it increases after heat-shock and cadmium treatment, and that it has a speci\ufb01c territorial distribution, both in normal and heat-shocked embryos, as shown by immunolocalization experiments. In this work, we analyzed by Western blot the territorial distribution of the protein in plutei exposed to heat-shock or sublethal cadmium concentrations, and we found that Hsp56 increases in both ectodermal and en- dodermal cells. Moreover, by \u201cin situ\u201d hybridization, we looked at Hsp56 mRNA during normal development and under stress conditions. We found that the territorial distribution of the messenger changes during development and that its amount is steadily increased in stressed embryos. Finally, by T1 RNase assay, we identi\ufb01ed a cytoplasmic factor that binds to the region of Hsp56 messenger containing the 5\u2019UT

    RT-PCR and in situ hybridization analysis of apolipoprotein H expression in rat normal tissues

    Get PDF
    In this study, by using different techniques (i.e. Northern blot hybridization, RT-PCR and Southern blot hybridization) on various normal rat tissues, we were able to identify liver, kidney, heart, small intestine, brain, spleen, stomach and prostate as tissues in which the ApoH gene is transcribed. Moreover, for some of these tissues, by in situ hybridization, we found a specific localization of apoH transcripts. For instance epithelial cells of the bile ducts in liver and of the proximal tubules in kidney are the major sites of apoH synthesis. Our data suggest that some of the different physiological roles proposed for apoH could correlate with its direct expression, while others could correlate with its absorption from bloodstream or adjacent cells

    A new p65 isoform that bind the glucocorticoid hormone and is expressed in inflammation liver diseases and COVID-19

    Get PDF
    Inflammation is a physiological process whose deregulation causes some diseases including cancer. Nuclear Factor kB (NF-kB) is a family of ubiquitous and inducible transcription factors, in which the p65/p50 heterodimer is the most abundant complex, that play critical roles mainly in inflammation. Glucocorticoid Receptor (GR) is a ligand-activated transcription factor and acts as an anti-inflammatory agent and immunosuppressant. Thus, NF-kB and GR are physiological antagonists in the inflammation process. Here we show that in mice and humans there is a spliced variant of p65, named p65 iso5, which binds the corticosteroid hormone dexamethasone amplifying the effect of the glucocorticoid receptor and is expressed in the liver of patients with hepatic cirrhosis and hepatocellular carcinoma (HCC). Furthermore, we have quantified the gene expression level of p65 and p65 iso5 in the PBMC of patients affected by SARS-CoV-2 disease. The results showed that in these patients the p65 and p65 iso5 mRNA levels are higher than in healthy subjects. The ability of p65 iso5 to bind dexamethasone and the regulation of the glucocorticoid (GC) response in the opposite way of the wild type improves our knowledge and understanding of the anti-inflammatory response and identifies it as a new therapeutic target to control inflammation and related diseases

    New Mediterranean Marine biodiversity records

    Get PDF
    Based on recent biodiversity studies carried out in different parts of the Mediterranean, the following 19 species are included as new records on the floral or faunal lists of the relevant ecosystems: the green algae Penicillus capitatus (Maltese waters); the nemertean Amphiporus allucens (Iberian Peninsula, Spain); the salp Salpa maxima (Syria); the opistobranchs Felimida britoi and Berghia coerulescens (Aegean Sea, Greece); the dusky shark Carcharhinus obscurus (central-west Mediterranean and Ionian Sea, Italy); Randall’s threadfin bream Nemipterus randalli, the broadbanded cardinalfish Apogon fasciatus and the goby Gobius kolombatovici (Aegean Sea, Turkey); the reticulated leatherjack Stephanolepis diaspros and the halacarid Agaue chevreuxi (Sea of Marmara, Turkey); the slimy liagora Ganonema farinosum, the yellowstripe barracuda Sphyraena chrysotaenia, the rayed pearl oyster Pinctada imbricata radiata and the Persian conch Conomurex persicus (south-eastern Kriti, Greece); the blenny Microlipophrys dalmatinus and the bastard grunt Pomadasys incisus (Ionian Sea, Italy); the brown shrimp Farfantepenaeus aztecus (north-eastern Levant, Turkey); the blue-crab Callinectes sapidus (Corfu, Ionian Sea, Greece). In addition, the findings of the following rare species improve currently available biogeographical knowledge: the oceanic pufferfish Lagocephalus lagocephalus (Malta); the yellow sea chub Kyphosus incisor (Almuñécar coast of Spain); the basking shark Cetorhinus maximus and the shortfin mako Isurus oxyrinchus (north-eastern Levant, Turkey)
    • 

    corecore