170 research outputs found

    Relative Comparison Kernel Learning with Auxiliary Kernels

    Full text link
    In this work we consider the problem of learning a positive semidefinite kernel matrix from relative comparisons of the form: "object A is more similar to object B than it is to C", where comparisons are given by humans. Existing solutions to this problem assume many comparisons are provided to learn a high quality kernel. However, this can be considered unrealistic for many real-world tasks since relative assessments require human input, which is often costly or difficult to obtain. Because of this, only a limited number of these comparisons may be provided. In this work, we explore methods for aiding the process of learning a kernel with the help of auxiliary kernels built from more easily extractable information regarding the relationships among objects. We propose a new kernel learning approach in which the target kernel is defined as a conic combination of auxiliary kernels and a kernel whose elements are learned directly. We formulate a convex optimization to solve for this target kernel that adds only minor overhead to methods that use no auxiliary information. Empirical results show that in the presence of few training relative comparisons, our method can learn kernels that generalize to more out-of-sample comparisons than methods that do not utilize auxiliary information, as well as similar methods that learn metrics over objects

    A two-step learning approach for solving full and almost full cold start problems in dyadic prediction

    Full text link
    Dyadic prediction methods operate on pairs of objects (dyads), aiming to infer labels for out-of-sample dyads. We consider the full and almost full cold start problem in dyadic prediction, a setting that occurs when both objects in an out-of-sample dyad have not been observed during training, or if one of them has been observed, but very few times. A popular approach for addressing this problem is to train a model that makes predictions based on a pairwise feature representation of the dyads, or, in case of kernel methods, based on a tensor product pairwise kernel. As an alternative to such a kernel approach, we introduce a novel two-step learning algorithm that borrows ideas from the fields of pairwise learning and spectral filtering. We show theoretically that the two-step method is very closely related to the tensor product kernel approach, and experimentally that it yields a slightly better predictive performance. Moreover, unlike existing tensor product kernel methods, the two-step method allows closed-form solutions for training and parameter selection via cross-validation estimates both in the full and almost full cold start settings, making the approach much more efficient and straightforward to implement

    What Is the Important Point Related to Follow-Up Sonographic Evaluation for the Developmental Dysplasia of the Hip?

    Get PDF
    Developmental dysplasia of the hip (DDH) is an important cause of childhood disability. Subluxation or dislocation can be diagnosed through pediatric physical examination; nevertheless, the ultrasonographic examination is necessary in diagnosing certain borderline cases. It has been evaluated routine sonographic examination of 2,444 hips of 1,222 babies to determine differences in both, developmental dysplasia and types of hips, and evaluated their development on the 3-month follow-up. Evaluating the pathologic alpha angles under 59, there was no statistically significant differences between girls and boys in both right (55.57 +/- 3.73) (56.20 +/- 4.01), (p = 0.480), and left (55.79 +/- 3.96) (57.00 +/- 3.84), (p = 0.160) hips on the 45th day of life. Routine sonographic examinations on the 45th day of life revealed that 51 of (66.2%) 77 type 2a right hips were girls and 26 (33.8%) were boys. The number of the right hips that develop into type 1 was 38 (74.5%) for girls and 26 (100%) for boys on the 90th day of life (p = 0.005). A total of 87 type 2a left hips included 64 girls (73.6%) and 23 boys (26.4%). In the 90th day control, 49 right hip of girls (76.6%) and 21 right hip of boys (91.3%) developed into type 1 (p = 0.126). In the assessment of both left and right hips, girls showed a significantly higher frequency in latency and boys showed significantly higher development in the control sonography. A total of 31 girls (2.5%) and 11 boys (0.9%) accounted for a total of 42 (3.4%) cases who showed bilateral type 2a hips in 1,222 infants. On the 90th day control, 26 girls (83.9%) and all 11 boys (100%) developed into type 1 (p = 0.156). The study emphasizes the importance of the sonographic examination on the 90th day of life. Results of the investigation include the data of sonographic screening of DDH on the 45th day, and also stress the importance of the 90th-day control sonography after a close follow-up with physical examination between 45th and 90th days of life

    Multi-Target Prediction: A Unifying View on Problems and Methods

    Full text link
    Multi-target prediction (MTP) is concerned with the simultaneous prediction of multiple target variables of diverse type. Due to its enormous application potential, it has developed into an active and rapidly expanding research field that combines several subfields of machine learning, including multivariate regression, multi-label classification, multi-task learning, dyadic prediction, zero-shot learning, network inference, and matrix completion. In this paper, we present a unifying view on MTP problems and methods. First, we formally discuss commonalities and differences between existing MTP problems. To this end, we introduce a general framework that covers the above subfields as special cases. As a second contribution, we provide a structured overview of MTP methods. This is accomplished by identifying a number of key properties, which distinguish such methods and determine their suitability for different types of problems. Finally, we also discuss a few challenges for future research

    Evaluation Method, Dataset Size or Dataset Content: How to Evaluate Algorithms for Image Matching?

    Get PDF
    Most vision papers have to include some evaluation work in order to demonstrate that the algorithm proposed is an improvement on existing ones. Generally, these evaluation results are presented in tabular or graphical forms. Neither of these is ideal because there is no indication as to whether any performance differences are statistically significant. Moreover, the size and nature of the dataset used for evaluation will obviously have a bearing on the results, and neither of these factors are usually discussed. This paper evaluates the effectiveness of commonly used performance characterization metrics for image feature detection and description for matching problems and explores the use of statistical tests such as McNemar’s test and ANOVA as better alternatives

    Scuba:Scalable kernel-based gene prioritization

    Get PDF
    Abstract Background The uncovering of genes linked to human diseases is a pressing challenge in molecular biology and precision medicine. This task is often hindered by the large number of candidate genes and by the heterogeneity of the available information. Computational methods for the prioritization of candidate genes can help to cope with these problems. In particular, kernel-based methods are a powerful resource for the integration of heterogeneous biological knowledge, however, their practical implementation is often precluded by their limited scalability. Results We propose Scuba, a scalable kernel-based method for gene prioritization. It implements a novel multiple kernel learning approach, based on a semi-supervised perspective and on the optimization of the margin distribution. Scuba is optimized to cope with strongly unbalanced settings where known disease genes are few and large scale predictions are required. Importantly, it is able to efficiently deal both with a large amount of candidate genes and with an arbitrary number of data sources. As a direct consequence of scalability, Scuba integrates also a new efficient strategy to select optimal kernel parameters for each data source. We performed cross-validation experiments and simulated a realistic usage setting, showing that Scuba outperforms a wide range of state-of-the-art methods. Conclusions Scuba achieves state-of-the-art performance and has enhanced scalability compared to existing kernel-based approaches for genomic data. This method can be useful to prioritize candidate genes, particularly when their number is large or when input data is highly heterogeneous. The code is freely available at https://github.com/gzampieri/Scuba
    • 

    corecore