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Abstract

This paper presents a new method for estimating error degrees in numerical weather prediction via multiple kernel
discriminant analysis (MKDA)-based ordinal regression. The proposed method tries to estimate how large prediction
errors will occur in each area from known observed data. Therefore, ordinal regression based on KDA is used for
estimating the prediction error degrees. Furthermore, the following points are introduced into the proposed
approach. Since several meteorological elements are related to each other based on atmospheric movements, the
proposed method merges such heterogeneous features in the target and neighboring areas based on a multiple
kernel algorithm. This approach is based on the characteristics of actual meteorological data. Then, MKDA-based
ordinal regression for estimating the prediction error degree of a target meteorological element in each area
becomes feasible. Since the amount of training data obtained from known observed data becomes very large in the
training stage of MKDA, the proposed method performs simple sampling of those training data to reduce the number
of samples. We effectively use the remaining training data for determining the parameters of MKDA to realize
successful estimation of the prediction error degree.

1 Introduction
Numerical weather prediction is one of the most impor-
tant research topics in the field of meteorology. Numer-
ical weather prediction enables quantitative calculation
of time variation for meteorological elements such as
atmospheric pressure, temperature, water vapor content,
amount of condensation, wind direction, and wind veloc-
ity to estimate their prospective values [1,2]. Recently, the
accuracy of numerical weather prediction has improved
due to improvements in meteorological observation
devices, meteorological models, and computer techno-
logy [3].
Many previously reported methods for numerical

weather prediction have been based on time-series mod-
els. Furthermore, several time-series forecasting methods
enable dynamically updating of the forecast according to
observed results [4,5]. Thesemethods construct transition
models of target elements on the basis of prior knowl-
edge discovered in the target field such as meteorology.
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This means that most studies are based on bottom-up
approaches, and optimal models are constructed for each
target element. Therefore, if target elements change, such
methods must also use other time-series models. For
example, if target elements are time-series with seasonal
patterns, the models are constructed on the basis of their
seasonal characteristics [6,7].
Although the performance of numerical weather pre-

diction has improved, large prediction errors might still
occur in leading edge technologies. In this paper, we
define values obtained by subtracting observed values
from predicted values calculated by numerical weather
prediction as prediction errors, and they can be writ-
ten by the following equation: [Prediction error] =
[Predicted value] − [Observed value].
In this paper, large prediction errors mean errors for

which absolute values of [Prediction error] are large. As
stated above, since there might be large prediction errors
in numerical weather prediction, meteorologists must
constantly monitor observed data and compare them to
the predicted values. Furthermore, when large prediction
errors occur, meteorologistsmust also modify the forecast
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based on the obtained errors. Therefore, the development
of methodologies for estimating large prediction errors is
important to assist meteorologists who monitor observed
data and modify the forecast. Although it is preferable to
minimize the prediction error instead of predicting the
error, the problem of minimization of the prediction error
is as difficult as numerical weather prediction. Therefore,
in this paper, we first focus on the easier problem.
Generally, we can estimate whether large prediction

errors will occur from known observed data based on
some classifiers such as a support vector machine (SVM)
[8]. This is related to the idea of outlier detection that
has recently been studied [9,10]. By using this method, it
becomes feasible to assistmeteorologists performing early
detection of large prediction errors and deciding which
areas should be monitored carefully. However, since this
method can only detect the occurrence of large errors,
it is still difficult to estimate their details such as signs
and degrees. Specifically, the estimation of ‘whether large
prediction errors will occur’ enables detection of places
where absolute differences between predicted values and
observed values are large, e.g., larger than a predefined
threshold. Then, by regarding such places as positive
examples to construct a classifier, it becomes feasible to
estimate the locations of large prediction errors. However,
since the obtained classifier performs binary classifica-
tion, it is difficult to determine whether predicted values
are larger or smaller than observed values and how large
the prediction errors are.
Therefore, we focus on prediction error degree esti-

mation based on ordinal regression. The reason why we
adopt this approach is shown below. If observed values
become higher or lower than their prediction values, the
prediction errors are closely related to their correspond-
ing problems such as disasters. For example, if the pre-
cipitation of the observed data is larger than the forecast,
it may cause a flood. On the other hand, if it is smaller,
a drought may be caused. Thus, the categorized classes
become different. Then, these classes are closely related
to the error degrees, which represent the correspond-
ing disasters and their scales. Therefore, the proposed
method estimates the prediction error degrees based on
the ordinal regression.
Note that specialists also perform numerical weather

prediction based on their experiences. Specifically, they
have many examples for performing numerical weather
prediction and modify their prediction results. Therefore,
the example-based approach from many training exam-
ples is also useful for prediction error degree estimation
in numerical weather prediction. This approach is only
based on many training examples and does not require
the use of sophisticated meteorological models. Thus, the
same scheme can be commonly applied to different mete-
orological elements. From this point of view, we focus on

error degree estimation based on ordinal regression using
many training examples.
Several methods have been proposed for ordinal regres-

sion that estimates categories of ordinal scale, and they are
suitable for solving the above problem.
In this paper, we focus on recent ordinal regression

methods based on SVM and discriminant analysis [11-13].
The basic idea for realizing ordinal regression is estimat-
ing decision surfaces separating neighboring categories
including ordinal scale, and this point is common in other
ordinal regression methods that do not adopt SVM and
discriminant analysis. The SVM-based methods regard
separating hyperplanes as decision surfaces considering
ordinal scales to keep the robustness realized by its gener-
alization characteristic. On the other hand, discriminant
analysis-based methods maximize between-class variance
and minimize within-class variance to separate neighbor-
ing categories with maintenance of their ordinal scales.
The details of the above methods are shown below.
First, we focus on methods based on an SVM [11,12].

Specifically, SVM-based methods calculate separating
hyperplanes, which are determined by only some train-
ing data, i.e., support vectors, and all other training data
are irrelevant to the determination of hyperplanes. This
is the biggest advantage of the SVM-based methods. On
the other hand, these methods tend to not grasp the
global distribution of target data. Specifically, the dis-
tributions of target data have directions. In such cases,
the separating rules should be determined according to
the directions of class distributions. However, SVM-based
methods focus on support vectors, and separating hyper-
planes are determined without considering the global dis-
tribution of each class, although this point is the biggest
contribution of SVM.
Sun et al. proposed an attractive approach for ordinal

regression based on kernel discriminant analysis (KDA) in
[13]. KDA is a kernel version of linear discriminant anal-
ysis (LDA) [14]. It was introduced in [15] and generalized
to more than two classes in [16] and [17]. The method in
[13] focuses on a characteristic that discriminant analysis
can concern global information of data with distribution
of classes for classification. Furthermore, by introducing
a rank constraint into KDA, successful ordinal regres-
sion can be realized. Specifically, LDA-based methods
including their kernel versions consider the distribution of
each class, i.e., the within-class covariance matrix and the
between-class covariance matrix are used for taking into
account the distribution direction. Therefore, the projec-
tion direction based on discriminant analysis, which can
use the global distributions, is obtained for the ordinal
regression.
It is expected that the KDA-based method can be

extended to a multiple kernel version. Liu et al. proposed
a novel unsupervised non-parametric kernel learning
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method, which can seamlessly combine the spectral
embedding of unlabeled data and manifold regularized
least squares to learn non-parametric kernels efficiently
[18]. From the above discussion, we focus on the KDA-
based ordinal regression extended to a multiple kernel
version for error degree estimation in numerical weather
prediction in this paper. Many researchers have stud-
ied multiple kernel learning (MKL) algorithms [19-21].
Furthermore, when focusing on the parameterized com-
bination approach, it is known that MKL algorithms do
not always outperform single kernel-based algorithms
if the combination parameters of the MKL algorithms
and parameters of the kernels used are not appropriately
determined [19]. Thus, their determination is important
to guarantee the final estimation performance.
Other than the abovementioned ordinal regression

methods, several attractive ordinal regression approaches
have been proposed. For example, Srijith et al. pro-
posed a leave-one-out Gaussian process ordinal regres-
sion method, which enables model selection based on
the leave-one-out cross-validation technique [22]. Fur-
thermore, sparse modeling of Gaussian process ordinal
regression enables reduction of computation cost. In [23],
neural network threshold ensemble models are proposed,
enabling an improvement in the performance of ordinal
regression of the threshold models. Seah et al. proposed
a new transductive ordinal regression method that intro-
duces the transductive approach into the general ordinal
regression problem [24]. Liu et al. proposed a neigh-
borhood preserving ordinal regression method that tries
to extract multiple projection directions from the origi-
nal dataset according to maximum margin and manifold
preserving criteria [25].
Finally, we organize our main focus of this paper into

several points. In this paper, we try to perform accu-
rate prediction error degree estimation based on ordinal
regression. From this point of view, we limit our main
focus to the following points.

(i) Prediction error degrees of different kinds of
meteorological elements should be estimated in the
same manner.

(ii) In numerical weather prediction, there are common
characteristics, e.g., use of atmospheric movements is
commonly effective for different meteorological
elements. Thus, it is suitable to adopt them for
prediction error degree estimation.

(iii) Since several meteorological elements affect each
other, prediction error degree estimation should be
performed by integrating these heterogeneous
elements.

The first point is the motivation for adopting an example-
basedmethod using ordinal regression instead of adopting

a meteorological model-based method. The second and
third points are useful for implementing ordinal regres-
sion concerning numerical weather prediction. When
applying ordinal regression to prediction error degree
estimation, we have to consider the above points. So
far, these points have not been addressed in previously
reported methods.
In this paper, we present a new method for error degree

estimation in numerical weather prediction via multi-
ple kernel discriminant analysis (MKDA)-based ordinal
regression.
We use ordinal regression based on KDA, which can

concern global information of the target data, and try
to improve it by using a multiple kernel scheme. The
proposed method represents error degrees by multiple
ordinal ranks and performs error degree estimation for
prospective values from known observed data by using
the KDA-based ordinal regression. Furthermore, we intro-
duce the following novel points into this approach to
realize successful estimation of prediction error degrees.
First, in order to accurately calculate input features used
for the ordinal regression, the proposed method uses
not only previously observed prediction errors in a tar-
get area but also those propagated from its neighboring
areas based on atmospheric movements. Since prediction
errors tend to be propagated to neighboring areas accord-
ing to atmospheric movements, this characteristic should
be considered in prediction error degree estimation. In
the proposed method, the amount of available training
data used for the KDA-based ordinal regression, which are
extracted from all observed areas, becomes huge. Since
the kernel methods depend only on computation involv-
ing inner products of those training data in the feature
space, it is difficult to directly apply the above approach to
such a huge amount of training data. Thus, a simple sam-
pling scheme of training data is adopted, and the use of
a kernel method becomes feasible. Fortunately, by using
the remaining training data removed after the sampling,
the proposedmethod performs effective parameter deter-
mination by the following novel approach. The proposed
method tries to introduce the multiple kernel scheme
into the KDA-based ordinal regression to merge multiple
meteorological elements. Various kinds of meteorologi-
cal elements can be used for estimating prediction error
degrees of a target meteorological element, and their fea-
tures are heterogeneous. Therefore, in order to merge
such heterogeneous features, the proposed method intro-
duces the multiple kernel scheme into the ordinal regres-
sion. As described above, a multiple kernel scheme does
not always improve the performance [19]. In order to
avoid performance degradation, we focus on the use of the
remaining large amount of training data removed after the
sampling scheme. Thismeans that we separately use train-
ing data for performing KDA-based ordinal regression
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and the combination parameter settings in the multiple
kernel scheme to keep the robustness. Furthermore, not
only the combination parameters but also the parameters
of the kernels used can be determined by the samemanner
in our method.
Then, accurate prediction error degree estimation

becomes feasible.

2 Prediction error degree estimation via
MKDA-based ordinal regression

This section presents a method for error degree estima-
tion in numerical weather prediction using MKDA-based
ordinal regression. In this paper, we define prediction
error degrees as several ordered discrete ranks. Specifi-
cally, we divide the axis of the prediction error into several
intervals and assign a symbol, which corresponds to the
prediction error degree, for each interval as shown in the
example in Figure 1. As shown in Figure 2, the proposed
method tries to estimate the unknown prediction error
degree that will occur in the forecast in each area from
known observed meteorological data. Specifically, from
observed data obtained several hours ago, the prediction
error degree is estimated for each area based on MKDA-
based ordinal regression. In order to perform training of
MKDA, we have to provide pairs of features extracted
from the observed meteorological data and known pre-
diction error degrees. Therefore, those training pairs are
prepared from past observation times, e.g., a few days
before the target day for which prediction error degrees
are estimated.
Section 2.1 presents details of feature extraction from

meteorological data, and Section 2.2 presents an algo-
rithm for estimating the prediction error degree based on
ordinal regression using MKDA.

2.1 Feature extraction frommeteorological data
This subsection presents details of feature extraction from
meteorological data. Using the proposed method, we try

to estimate the prediction error degree in each area by
using features calculated from ‘previously observed errors
of a target meteorological element and some other related
elements’ and ‘their time variations’ in the same area and
its neighboring areas. Only features of neighboring areas
in which the atmospheres move to the target area affect
the prediction error degree estimation of the target area.
Suppose that prediction error degree estimation of a

target meteorological element F0 is performed in area p
at time t. Furthermore, it is assumed that the prediction
errors of several related meteorological elements includ-
ing F0, Fl (l = 0, 1, · · · , L; L + 1 being the number of
meteorological elements used for calculating features) at
time t − s�t (s = 0, 1, · · · , S) are known, where the
index s is used for referring to the current or past time
steps. The proposed method calculates time average and
maximum and minimum values of the prediction errors
el(p, t), xavel (p, t), xmax

l (p, t), xmin
l (p, t), respectively, and

the average of their time variations xtvl (p, t) between time
t−(s+1)�t and t−s�t for eachmeteorological element Fl
in each area p as feature values. In this section, el(p, t) rep-
resents the prediction error of meteorological element Fl
in area p at time t. In detail, xavel (p, t), xmax

l (p, t), xmin
l (p, t),

and xtvl (p, t) can be obtained as follows:

xavel (p, t) = 1
S + 1

S∑
s=0

el(p, t − s�t), (1)

xmax
l (p, t) = max

s=0,1,··· ,S
el(p, t − s�t), (2)

xmin
l (p, t) = min

s=0,1,··· ,S
el(p, t − s�t), (3)

xtvl (p, t) = 1
S

S−1∑
s=0

xtvl,s(p, t), (4)

where

xtvl,s(p, t) = el(p, t − s�t) − el(p, t − (s + 1)�t). (5)

Prediction error of temperature

error
degree1

-1-2-3 1 2 3

error
degree2

error
degree3

error
degree4

error
degree5

error
degree6

error
degree7

(i) Divide the axis of the prediction error into 
K intervals (K=7 in this example).

(ii) Assign K symbols to the obtained intervals.

(iii) Regard each symbol as a prediction error degree.

Figure 1 Example of defining the prediction error degree for meteorological element ‘temperature’. (i to iii) Procedures for defining the
prediction error degrees. In this figure, we set K to 7 as an example, where K is the number of classes, i.e., the number of prediction error degrees.
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Target day (e.g. Jan. 4th)
Observed meteorological data
monitored several hours ago

Unknown prediction error degree

MKDA-based
ordinal regression

A few days before target day (e.g. Jan. 1st, 2nd, 3rd)

Pairs of observed meteorological data and known prediction error degrees

Training stage

Test stage

�

?

Figure 2 Overview of the proposedmethod. From pairs of observed meteorological data and known prediction error degrees in past
observation times, e.g., a few days before the target day, training of the MKDA is performed. The prediction error degree estimation of the target day
is performed from observed known meteorological data via MKDA-based ordinal regression.

For calculating the four features xavel (p, t), xmax
l (p, t),

xmin
l (p, t), and xtvl (p, t) of the target area p for meteoro-
logical element Fl at time t, the errors el(p, t), el(p, t −
�t), el(p, t−2�t), · · · , el(p, t−S�t) are used. This means
that errors in the same area p at current and past times
are used for the calculation. Note that in Equations 1 to 5,
the index l is used for referring to the lth meteorological
element Fl.
Furthermore, in order to use the prediction errors that

are propagated from neighboring areas to the target area
based on atmospheric movements, motion vectors repre-
senting atmospheric movements between time t−�t and
time t are obtained by using observed wind velocities for
each area. Then, the feature xneighborl (p, t) of the predic-
tion error for meteorological element Fl propagated from
the neighboring areas to the target area p is obtained by
the following equation:

xneighborl (p, t) = averagep∗∈R(p,t)

[
el(p∗, t − �t)

]
, (6)

where average [·] is an operator calculating the average
values. Furthermore, R(p,t) represents a set of areas in
which atmospheres move to the target area p from time
t − �t to time t. Specifically, by denoting the atmospheric
movement of area p∗ from time t − �t to time t as
v(p∗, t − �t), R(p,t) can be represented as follows:

R(p,t) = {
p∗|p∗ + v

(
p∗, t − �t

) ≈ p
}
. (7)

By using the atmospheric movements, we can select areas
in which atmospheres move to the target area p from time
t − �t to time t. As shown in Equation 7, we define the
neighbor of p. In this equation, the neighbor is a set of
areas p∗ satisfying p∗ + v (p∗, t − �t) ≈ p. This means
‖p∗ + v (p∗, t − �t) − p‖c < ε is satisfied for a small pos-
itive constant ε. Note that ‖·‖c represents the chessboard
distance. In this study, we set ε to 5 km. Since the dis-
tance between the most neighboring areas is 5 km in the
dataset used in the experiments, we set ε to 5 km. There-
fore, if the distance between the most neighboring areas
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changes, we should also change ε. Furthermore, it is well
known that if the distance between the most neighboring
areas becomes smaller, the performance of the numerical
weather prediction also becomes better. Similarly, it can
be expected that the performance of the prediction error
degree estimation becomes better if the distance between
the most neighboring areas becomes smaller. As shown
in the example in Figure 3, the atmospheres of six areas,
i.e., yellow areas, move to the target area p. Therefore,
these six areas are regarded as neighbors. Then, the pre-
diction errors el(p∗, t − �t) of these six areas p∗ in the
previous time step t − �t are averaged, and the feature
xneighborl (p, t) is obtained. If none of the areas are moving
into the target area p, xneighborl (p, t) is set to zero in our
method. By using the features in Equation 6, the influence
of prediction errors propagated to the target area p can be
considered.
From the features xavel (p,t), xmax

l (p,t), xmin
l (p, t), xtvl (p, t),

and xneighborl (p, t) (l = 0, 1, · · · , L), we can define a fea-
ture vector for each area p at time t. Note that these five
features in area p at time t for meteorological element
Fl can be calculated from several isometric surfaces in
the proposed method. Therefore, given the number of
isometric surfaces as J, 5J features are obtained in area p
at time t for each meteorological element Fl. Then, for
each area p at time t, a total of d (= 5J × (L + 1)) features
is obtained, i.e., a d-dimensional feature vector is finally
obtained.

2.2 Algorithm for estimation of prediction error degree
This subsection presents an algorithm for estimating pre-
diction error degrees using MKDA-based ordinal regres-
sion. The proposed method estimates class labels, i.e.,
prediction error degrees at each area p, from the features
obtained as described in the previous subsection.

First, we denote a set of training data (xi, yi) ∈ Rd × R
(i = 1, 2, · · · ,M; M being the number of training sam-
ples) as TM . Each xi ∈ Rd is a d-dimensional (d being
the number of features shown in the previous subsec-
tion) input feature vector, and yi ∈ {1, 2, · · · ,K} is the
corresponding ordered class label, where K is the num-
ber of classes. This label can be obtained by quantizing
the known prediction error of target meteorological ele-
ment F0 into K ranks as shown in the example in Figure 1.
In Figure 1, K is set to seven. Furthermore, the proposed
method maps xi into the feature space via a nonlinear
map [26], and φ(xi) ∈ F is obtained. In the proposed
method, φ(·) is a nonlinear map which projects an input
vector to high-dimensional feature space. Furthermore,
F represents this high-dimensional feature space. Note
that its dimension depends on the definition of the cor-
responding kernel function of the nonlinear map φ(·).
Since φ(xi) is high-dimensional or infinite-dimensional,
it may not be possible to calculate them directly. For-
tunately, it is well known that the following computa-
tional procedures depend only on the inner products in
the feature space, which can be obtained from a suit-
able kernel function [26]. Given two vectors xm and xn
∈ Rd, our method uses the following multiple kernel
functions:

φ (xm)′ φ (xn) =
L∑

l=0

γlκl (Elxm,Elxn) , (8)

where γl represents the weight of the lth kernel κl(·, ·) and
satisfies γl ≥ 0 and

∑L
l=0 γl = 1. The superscript ′ denotes

the vector/matrix transpose in this paper. Furthermore,
El in Equation 8 is a diagonal matrix whose diagonal ele-
ments are zero or one, and it enables the extraction of

Figure 3 Example of selecting neighboring areas of target area p.
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features of meteorological element Fl that are used for the
lth kernel κl(·, ·). Specifically, the dimension of vectors xm
and xn is d(= 5J × (L + 1)) as defined in the previous
subsection, and each extraction matrix El extracts 5J fea-
tures of each meteorological element Fl. In the proposed
method, the multiple kernel scheme is applied to differ-
ent meteorological elements. Since we use L + 1 kinds of
meteorological elements, L + 1 kernels are linearly com-
bined in Equation 8. As shown in the previous subsection,
various kinds of meteorological elements can be used for
estimation of the prediction error degree. Thus, the pro-
posed method extends the kernel function to a multiple
kernel version as shown in Equation 8. Then, by success-
fully determining the parameters γl (l = 0, 1, · · · , L) in
the multiple kernel function, the features can be mapped
into the optimal feature space, enabling accurate ordi-
nal regression. It is important to successfully determine
the parameters γl, and details of their determination are
shown in Section 2.2.2. Note that κl(·, ·) of each meteoro-
logical element Fl is set to the well-knownGaussian kernel
in our method.

2.2.1 Sampling of training data
Note that when the kernelmethod is adopted, direct use of
MKDA, for which computation depends only on the inner
products in the feature space, becomes difficult due to the
large amount of training data.
Therefore, the proposed method uses a sampling

scheme.
Specifically, we regard the error data el(p, t) at

time t as two-dimensional signals and perform their
downsampling.
Then, the new sampled training data (xi, yi) (i = 1,

2, · · · ,N ; N < M) can be obtained, where (xi, yi) is rede-
fined, andN is the number of new training samples. In the
following explanations of training of MKDA, we use these
training data (xi, yi) (i = 1, 2, · · · ,N). Also, we denote a
set of these sampled training data as TN .
By reducing the number of training samples, the per-

formance of the KDA-based ordinal regression tends to
become worse. Note that in the proposed method, we
regard the error data el(p, t) as two-dimensional signals
and perform their downsampling. Generally, neighboring
areas in meteorological data tend to have similar fea-
tures, and it seems that the distribution of training data
is not drastically changed by the sampling. Thus, per-
formance degradation tends to be avoided. Furthermore,
in the proposed method, the remaining training data in
TM − TN , which are removed by the sampling, can be
used for estimating γl (l = 0, 1, · · · , L) in Equation 8. For-
tunately, by using these remaining data, we can improve
the performance of the error degree estimation based
on the multiple kernel scheme. The details are shown
in 2.2.3.

2.2.2 Derivation of MKDA
The objective of the discriminant analysis is to find a
projection w from which different classes can be well
separated. Specifically, we first define within-class and
between-class scatter matrices as follows:

Sw = 1
N

K∑
k=1

Nk∑
j=1

{
φ

(
xkj

)
− mk

} {
φ(xkj ) − mk

}′

= 1
N

K∑
k=1

�kHk�k ′, (9)

Sb = 1
N

K∑
k=1

Nk
(
mk − m

) (
mk − m

)′
, (10)

where

mk = 1
Nk

Nk∑
j=1

φ
(
xkj

)

= 1
Nk �k1k . (11)

In the above equations, xkj
(
j = 1, 2, · · · ,Nk) corre-

sponds to xi (i = 1, 2, · · · ,N) belonging to the kth
class (i.e., yi = k), and mk denotes the mean vector of
φ(xkj ) belonging to the kth class as shown in Equation 11.

Furthermore, �k =
[
φ

(
xk1

)
, φ

(
xk2

)
, · · · , φ(xkNk )

]
, and

Hk = Ik − 1
Nk 1k1k

′ is a centering matrix satisfying Hk ′ =
Hk and

(
Hk

)2 = Hk , where Ik is the Nk × Nk identity
matrix, and 1k = [1, 1, · · · , 1]′ is an Nk × 1 vector. The
vector m = 1

N
∑N

i=1 φ(xi) in Equation 10 stands for the
mean vector of all samples xi (i = 1, 2, · · · ,N). Generally,
the objective of the discriminant analysis can be achieved
by the following equation:

min J(w) = w′Sww
w′Sbw

. (12)

In the proposed method, we perform ordinal regression
with K ordered classes. Therefore, the goal of our method
is to find the optimal projectionw satisfying the following
two points:

1. The projection w should minimize the within-class
distance and maximize the between-class distance
simultaneously.

2. The projection w should ensure ordinal information
of different classes, i.e., the average projection of
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samples from higher rank classes should be larger
than that of lower rank classes.

Therefore, the formulation for the MKDA-based ordinal
regression is derived from [13] as follows:

min J(w, ρ) = w′Sww − Cρ s.t. w′ (mk+1 − mk
)

≥ ρ, k = 1, 2, · · · ,K − 1, (13)

where C > 0 represents a penalty coefficient. The
above equation minimizes the within-class distances.
Furthermore, instead of using the between-class scat-
ter matrix directly, the above equation tries to max-
imize the distance between the two projected means
from the closest pair of classes. Specifically, Equation 12
tries to minimize the within-class distance and max-
imize the between-class distance simultaneously. On
the other hand, Equation 13 reformulates the prob-
lem of Equation 12. The within-class distance is mini-
mized from w′Sww in J(w, ρ). Furthermore, instead of
directly maximizing the between-class distance, a new
constraint w′ (mk+1 − mk) ≥ ρ (k = 1, 2, · · · ,K − 1) is
introduced. In this way, our MKDA-based ordinal regres-
sion tries to estimate the projection w minimizing
within-class distance with the constraint of ordinal
information. Thus, the distribution direction can be con-
sidered by using the within-class scatter matrix Sw in
Equation 13.
In MKDA, the projection w is high-dimensional or

infinite-dimensional and cannot be calculated directly.
Thus, the projection w is written as follows:

w =
N∑
i=1

βiφ (xi)

= �β ,

(14)

where βi(i = 1, 2, · · · ,N) is a linear coefficient, and
β = [β1, β2, · · · , βN ]′. In addition, �= [φ(x1), φ(x2), · · · ,
φ(xN)]. In the proposed method, we derived Equation 14
by using the method in [13]. In several kernel meth-
ods such as KDA and KPCA, the projection is repre-
sented by a linear combination of the samples. There-
fore, we adopt the above derivation. However, derivation
of the representer theorem in a multiple kernel case
is not so straightforward. In the proposed method, we
approximately use the derivation of Equation 14. Since
the theoretical analysis of this approximation cannot be
shown in this paper, this will be a future work of our
study.

By using Equations 9, 11, and 14 and J(w, ρ) and
w′ (mk+1 − mk) in Equation 13 are respectively rewritten
as follows:

J(w, ρ) = (�β)′
(
1
N

K∑
k=1

�kHk�k ′
)

�β − Cρ

= β ′
{
1
N

K∑
k=1

(
�′�k

)
Hk

(
�k ′

�
)}

β − Cρ

= β ′
{
1
N

K∑
k=1

GkHkGk ′
}

β − Cρ

= β ′Tβ − Cρ, (15)

w′(mk+1−mk
)

= (�β)′
(

1
Nk+1 �k+11k+1 − 1

Nk �k1k
)

= β ′
(

1
Nk+1 �′�k+11k+1 − 1

Nk �′�k1k
)

= β ′
(

1
Nk+1G

k+11k+1 − 1
NkG

k1k
)

= β ′ (rk+1 − rk
)
, (16)

where

Gk = �′�k , (17)

T = 1
N

K∑
k=1

GkHkGk ′, (18)

rk = 1
Nk G

k1k . (19)

The problem of w in Equation 13 can be rewritten as
that of β as follows:

min J(β , ρ) = β ′Tβ − Cρ s.t. β ′ (rk+1 − rk
)

≥ ρ, k = 1, 2, · · · ,K − 1. (20)

In order to solve Equation 20, we define the following
Lagrangian equation:

L(β , ρ, α) = β ′Tβ − Cρ

−
K−1∑
k=1

αk
{
β ′ (rk+1 − rk

)
− ρ

}
, (21)

where α = [
α1, α2, · · · , αK−1]′ represents a vector con-

taining Lagrange multipliers. Then, by calculating ∂L
∂β

= 0
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and ∂L
∂ρ

= 0, the following equations are respectively
obtained:

β = 1
2
T−1

K−1∑
k=1

αk
(
rk+1 − rk

)
, (22)

K−1∑
k=1

αk = C. (23)

From the above equations, the optimization problem in
Equation 20 is turned into

min(α) =
K−1∑
k=1

αk
(
rk+1 − rk

)′
T−1

K−1∑
k=1

αk
(
rk+1 − rk

)

s.t. αk ≥ 0, k = 1, 2, · · · ,K − 1, and

K−1∑
k=1

αk = C. (24)

The proposed method estimates the optimal result of α
by using the penalty method [27].

2.2.3 MKDA-based ordinal regression and determinationof
kernels’ contributions

As shown in the above explanation, we can obtain the
optimal projection of w from β obtained by α.
From the obtained optimal projection w, the rank of an

unseen input feature vector x, i.e., the prediction error
degree at each area p, can be estimated by the following
decision rule:

f (x) = min
k∈{1,2,··· ,K}

{
k : w′φ(x) − bk < 0

}
, (25)

where bk is defined as

bk = β ′ (rk+1 + rk
)

2
. (26)

Then, from Equations 14 and 26, Equation 25 is rewrit-
ten as follows:

f (x) = min
k∈{1,2,··· , K}

{
k : β ′

(
�′φ(x) − rk+1 + rk

2

)
< 0

}
.

(27)

The above equation enables ordinal regression for esti-
mating prediction error degrees.
Note that since our method adopts a multiple kernel

algorithm, we also have to determine γ = [γ0, γ1, · · · , γL]′
in Equation 8. Some methods such as simple MKL [21]
have been proposed for determining γ . However, if the
simple MKL is used for estimating the parameters of the
linear combination of kernels, successful performance of
the error degree estimation is not possible.We guess when
using the simpleMKL, the result of γ that providesw opti-

mal for Equation 13 is obtained from the sampled training
data, and the generalization characteristic becomes worse,
and then a phenomenon similar to overfitting occurs. This
means that the fitting of γ tends to strongly depend on the
sampled training data. Furthermore, it has been reported
that the MKL approach does not always outperform a sin-
gle kernel-based approach [19]. Thus, it is important to
determine γ in such a way that the performance can be
guaranteed for other new samples to keep the robustness.
Fortunately, we have the other remaining training data

(xi, yi) included in TM − TN , which are removed by the
sampling scheme. Therefore, we use them and verify the
estimation performance of the error degrees, and the best
result of γ is determined by an exhaustive search. Gener-
ally, the statistical characteristics of the test data tend to be
slightly different from that of the training data. Therefore,
in order to make the proposed method robust to this dif-
ference, we use the other remaining training data included
in TM−TN . Specifically, the proposedmethod changes the
values of γl (l = 0, 1, 2, · · · , L) as 0.1, 0.2, · · · , 1.0 with the
constraints of γl ≥ 0 (l = 0, 1, 2, · · · , L) and ∑L

l=0 γl =
1.0. Then, the problem in Equation 28 is optimized with
α. Furthermore, for the data (xi, yi) included in TM − TN ,
which are the remaining training data after the sampling,
we perform the estimation of prediction error degrees and
calculate their mean absolute errors.
Specifically, the errors between the estimated error

degree f (xi) in Equation 31 and the true rank yi are cal-
culated. Finally, we output the optimal result of γ that
provides the most accurate estimation results, i.e., the
minimum mean absolute error. By using this exhaustive
search procedure, the proposed method enables deter-
mination of the multiple kernel function. Note that in
the same way as γ , the proposed method estimates the
parameter of the Gaussian kernel for each meteorological
element, where the searching interval is set to 0.5.
In this way, we can perform prediction error degree esti-

mation by using ordinal regression based on MKDA. In
numerical weather prediction, various observed inputs,
i.e., various input feature vectors, are obtained. Since dis-
criminant analysis can consider the global information
of the data with the distribution of the classes, the pro-
posed method adopts it for the estimation. Furthermore,
the proposedmethod adopts sampling of the training data
and effectively uses the remaining data for estimating the
optimal parameters of the multiple kernel scheme. This is
the biggest difference between the proposed method and
the conventional KDA-based method.

3 Experimental results
In order to verify the performance of the proposed
method, this section shows results obtained by applying
the proposed method to real data of numerical weather
prediction. In this experiment, we used three datasets
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obtained by numerical weather prediction performed
in January 2010, the data being provided by the Japan
Weather Association. As shown in Figure 4, each dataset
contains prediction and observed data for 4 days, and
the three datasets are obtained by using a sliding win-
dow including 4 days, the sliding interval of which is set
to half a day. We assumed that the data at 3, 6, and 9 h
after the beginning of the forecast were all known to cal-
culate the feature vector, and we performed error degree
estimation at 12 h after the beginning of the forecast by
using these known data. Therefore, S = 2, i.e., S + 1 = 3
time steps were used for calculating feature vectors to esti-
mate error degrees in these experiments. Furthermore,�t
was 3 h. Then, the training procedures were performed by
using the data for the first 3 days, and verification of the
prediction error degree estimation was performed for the
remaining 1 day, i.e., the training and test corresponded
to the first 3 days and the remaining 1 day (fourth day),
respectively. The data used for the training and the test are
specifically shown as follows:

Dataset 1:
Training: ‘Jan. 15th 0:00-12:00’, ‘Jan. 16th 0:00-12:00’, ‘Jan.
17th 0:00-12:00’
Test: ‘Jan. 18th 0:00-12:00’
Dataset 2:
Training: ‘Jan. 15th 12:00-24:00’, ‘Jan. 16th 12:00-24:00’,
‘Jan. 17th 12:00-24:00’
Test: ‘Jan. 18th 12:00-24:00’

Dataset 3:
Training: ‘Jan. 16th 0:00-12:00’, ‘Jan. 17th 0:00-12:00’, ‘Jan.
18th 0:00-12:00’
Test: ‘Jan. 19th 0:00-12:00’
Each dataset contains 52,300 areas, and the error degree
estimation results for test data are obtained from those
52,300 areas. In addition, for example, the details of the
training data and the test data in Dataset 1 are the follow-
ing combinations (pairs of the features and the labels).
Training data (52, 300× 3(= M) samples)
(‘Features extracted from 3:00, 6:00, and 9:00 on Jan. 15th’,
‘known error degrees at 12:00 on Jan. 15th’)
(‘Features extracted from 3:00, 6:00, and 9:00 on Jan. 16th’,
‘known error degrees at 12:00 on Jan. 16th’)
(‘Features extracted from 3:00, 6:00, and 9:00 on Jan. 17th’,
‘known error degrees at 12:00 on Jan. 17th’)
Test data (52,300 samples)
(‘Features extracted from 3:00, 6:00, and 9:00 on Jan. 18th’,
‘unknown error degrees at 12:00 on Jan. 18th’)

Furthermore, the target meteorological elements F0,
whose error degrees are estimated, and other elements
used to calculate features for the estimation are shown
in Table 1, where multiple isopiestic surfaces represent
those of 1,000 hPa, 950 hPa, 925 hPa, 850 hPa, 700 hPa,
500 hPa, and 300 hPa. As shown in Table 2, we respec-
tively set seven ranks corresponding to the prediction
error degrees for each target element in Table 1 in this
experiment.

Figure 4 Overview of the experimental conditions. Each dataset contains prediction and observed data for 4 days, where the first 3 days and the
the remaining 1 day respectively correspond to the training and the test. Data at 3, 6, and 9 h after the beginning of the forecast were used for error
degree estimation at 12 h after the beginning of the forecast.
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Table 1 Meteorological elements of estimation targets
and feature extraction

Target elements Other elements used for feature extraction

Temperature on
the ground

‘Temperature on the multiple isopiestic surfaces’
and ‘relative humidity and wind velocity on the
ground and multiple isopiestic surfaces’

Relative humidity
on the ground

‘relative humidity on the multiple isopiestic
surfaces’ and ‘temperature and wind velocity on
the ground and multiple isopiestic surfaces’

Wind velocity on
the ground

‘Wind velocity on the multiple isopiestic surfaces’
and ‘temperature and relative humidity on the
ground and multiple isopiestic surfaces’

We simply set K to 7, and there is no specific reason.
This value should be determined to the optimal value
for target meteorologists whomonitormeteorological ele-
ments. Then, by using the features calculated from the
previously known prediction errors caused in the target
element F0 and some other elements (corresponding to F1
and F2), unknown error degree estimation of each target
element shown in the left side of Table 1 is performed.
In this experiment, the number of kernels, i.e., the num-

ber of meteorological elements, L + 1, is 3. Since three
kinds of data, ‘temperature’, ‘relative humidity’, and ‘wind
velocity’, are used, the number of meteorological elements
L + 1 becomes 3. Note that for each meteorological ele-
ment, five features shown in Section 2.1 are calculated
from eight isopiestic surfaces, i.e., J = 8, where the eight
isopiestic surfaces correspond to those of the ground,
1000 hPa, 950 hPa, 925 hPa, 850 hPa, 700 hPa, 500 hPa and
300 hPa. Thus, 40 (= 5× 8) features are input to each ker-
nel corresponding to each meteorological element. Then
the number of all features is d = 120 (= 40 × 3) in
this experiment. Specifically, we performed the estimation
by using the proposed method and the following conven-
tional methods: SVOR-IMC [11], SVM-EBC [12], and the
simple KDA [13]. Since these conventional methods are
benchmarking methods and state-of-the-art methods of
ordinal regression, they are suitable for comparison with
the proposed method.

First, we show the estimation performance of predic-
tion error degrees by the proposed method and the con-
ventional methods. Figure 5a,b,c,d,e shows the results
obtained by estimating the prediction error degrees of
‘temperature on the ground’ in each area based on the
proposed and conventional methods.
Note that the parameters used in the proposed method

are the number of sampled training data N and C
in Equation 13, the weights of the kernels γl(l = 0, 1,
2, · · · , L), and the parameters of the Gaussian kernels.
First, N was simply set to M

300 . Next, we set the value
of C to 0.1, but the final results of error degree estima-
tion do not depend on C, the proof of which is shown in
Appendix 1. As shown in 2.2.3, the weights of the kernels
γl (l = 0, 1, 2, · · · , L) and the parameters of the Gaussian
kernels can be automatically determined by the proposed
method.
Tables 3, 4, 5 respectively show the results of γl auto-

matically obtained by the proposed method, and Table 6
shows the parameters of the Gaussian kernels determined
by the proposed method. Note that the parameters of the
conventional methods were determined on the basis of
the schemes shown in their papers. In Figure 5a,b,c,d,e,
black regions represent areas for which data cannot be
obtained. For better subjective evaluation, zoomed por-
tions of Figure 5a,b,c,d,e are shown in Figure 5f,g,h,i,j. Fur-
thermore, Figure 5k,l,m,n,o shows the differences between
estimated prediction error degrees and true degrees. In
these results, the intensity represents the absolute dif-
ference, and if the intensity is brighter, the absolute dif-
ference is larger. Since Figure 5k does not contain any
errors, the whole areas become black (zero). From the
obtained results, it can be seen that the proposed method
successfully estimates the prediction error degrees with-
out suffering from large misestimation compared to the
conventional methods. Figures 6 and 7 also show the
results obtained by applying the proposed and conven-
tional methods to the other elements shown in Table 1.
From these results, it can be confirmed that the proposed
method enables more successful estimation for various
kinds of meteorological elements.

Table 2 Prediction error degrees and their error value range

Error degree Color Temperature Relative humidity Wind velocity

1 Blue err < −3°C err < −20% err < −3 m/s

2 Light blue −3°C ≤ err < −2°C −20% ≤ err < −10% −3 m/s ≤ err < −2 m/s

3 Green −2°C ≤ err < −1°C −10% ≤ err < −5% −2 m/s ≤ err < −1 m/s

4 White −1°C ≤ err < 1°C −5% ≤ err < 5% −1 m/s ≤ err < 1 m/s

5 Yellow 1°C ≤ err < 2°C 5% ≤ err < 10% 1 m/s ≤ err < 2 m/s

6 Orange 2°C ≤ err < 3°C 10% ≤ err < 20% 2 m/s ≤ err < 3 m/s

7 Red 3°C ≤ err 20% ≤ err 3 m/s ≤ err

Temperature, relative humidity, and wind velocity respectively represent the error value of ‘temperature on the ground’, error value of ‘relative humidity on the
ground,’ and error value of ‘wind velocity on the ground’. Furthermore, err means error.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)
Figure 5 Results of estimated prediction error degrees for the meteorological element ‘temperature on the ground’. (a) True prediction
error degrees. (b) Results of estimation by the proposed method. (c) Results of estimation by the simple KDA [13]. (d) Results of estimation by
SVM-EBC. (e) Results of estimation by SVOR-IMC. (f, g, h, i, j). Zoomed portions of (a, b, c, d, e), and (k, l, m, n, o) absolute differences between the
true prediction error degrees and estimated results in (f, g, h, i, j).

The above experiments were performed on a personal
computer using Intel(R) Core(TM) i7 960 CPU 3.20 GHz
with 24.0 Gbytes RAM. The proposedmethod was imple-
mented by using Matlab. The average computation time
for the training procedures in our method is about 4.67 ×
103 s for Datasets 1 to 3, respectively. The average compu-
tation time for the test procedures is about 6.02×102 s for
Datasets 1 to 3, i.e., 1.15×10−2 for each area, respectively.
From the obtained results, the computation costs of the
training procedures are much larger than those of the test
procedures. In the proposed method, we use an exhaus-
tive search for determining the combination parameters
of multiple kernels and the parameter of each kernel.
Thus, high computation costs are required. However, the
exhaustive search can be simply parallelized for each

Table 3 Estimation results of the kernel weights for
‘temperature on the ground’

Meteorological element Dataset 1 Dataset 2 Dataset 3

γ0 (temperature) 0.7 0.7 0.9

γ1 (relative humidity) 0.2 0.2 0.0

γ2 (wind velocity) 0.1 0.1 0.1

Results of γ l (l = 0, 1, 2) obtained by the proposed method when estimating the
prediction error degree of ‘temperature on the ground’. γ 0, γ 1, and γ 2
respectively represent the weights of the kernels for temperature, relative
humidity, and wind velocity.

combination of parameters. Therefore, by introducing a
parallel search for the parameters, the above computation
time for the training procedures can be reduced to about
8.96 s.
Next, we show quantitative evaluation results of the

proposed method and the conventional methods. In this
experiment, we adopted the following two evaluation
metrics:

1. Mean absolute error (MAE): mean of absolute errors
between estimated prediction error degrees and their
true degrees

2. Mean square error (MSE): mean of square errors
between estimated prediction error degrees and their
true degrees

Table 4 Estimation results of the kernel weights for
‘relative humidity on the ground’

Meteorological element Dataset 1 Dataset 2 Dataset 3

γ0 (relative humidity) 0.2 0.7 0.4

γ1 (temperature) 0.4 0.0 0.5

γ2 (wind velocity) 0.4 0.3 0.1

Results of γ l (l = 0, 1, 2) obtained by the proposed method when estimating the
prediction error degree of ‘relative humidity on the ground’. γ 0, γ 1, and γ 2
respectively represent the weights of the kernels for relative humidity,
temperature, and wind velocity.
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Table 5 Estimation results of the kernel weights for ‘wind
velocity on the ground’

Meteorological element Dataset 1 Dataset 2 Dataset 3

γ0 (wind velocity) 0.5 0.8 0.6

γ1 (temperature) 0.1 0.1 0.0

γ2 (relative humidity) 0.4 0.1 0.4

Results of γ l (l = 0, 1, 2) obtained by the proposed method when estimating the
prediction error degree of ‘wind velocity on the ground’. γ 0, γ 1, and γ 2
respectively represent the weights of the kernels for wind velocity, temperature,
and relative humidity.

We used MAE since the KDA-based ordinal regression
in [13] adopted it for the evaluation. Furthermore, in order
to evaluate which methods can avoid large misestima-
tion of the prediction error degree, we used MSE in the
experiments.
The error degree is defined as shown in Table 2. There-

fore, the results of the prediction error degree have values
ranging over 1, 2, · · · , 6, 7. In the experiments, we calcu-
lated MAE and MSE from these values.
Tables 7 and 8 show the results for MAE and MSE,

respectively, obtained by applying our method and the
conventional methods to the three datasets. Thus, in each
meteorological element, the MAE and MSE were calcu-
lated from 156,900 areas. Note that in these tables, we
also show the results of a method that does not con-
sider the propagation of prediction errors based on atmo-
sphericmovements.We simply call thismethod ‘proposed
method without propagation (PM-WP)’.
From the obtained results, the proposedmethod enables

more accurate estimation than does the PM-WP. There-
fore, it can be confirmed that the calculation of features
obtained by using the propagation of prediction errors
based on atmospheric movements tends to be effective in
our method. Furthermore, by comparing with the KDA-
based method [13], we can also see that introduction of
the multiple kernel algorithm into the proposedmethod is
effective. From these tables, we can see that the proposed
method tends to perform more accurate estimation than
do the conventional methods. The proposedmethod real-
izes the most accurate performance when using the MSE.
Thus, since the MSE becomes lower, it seems that our
method can avoid large misestimation of the prediction
error degree.

Table 6 Parameters of the Gaussian kernels used in the
proposedmethod

Meteorological element Dataset 1 Dataset 2 Dataset 3

Temperature 4.5 5.0 4.0

Relative humidity 5.0 5.0 5.0

Wind velocity 5.0 5.0 5.0

Weperformed a statistical test,Welch’s t test, to confirm
the difference between the results of the proposedmethod
and the conventional methods in Tables 7 and 8. The
results with the significance level set to 0.05 are shown.
The details of the statistical test are shown in Appendix 2.
In Tables 7 and 8, when the difference between the
proposed method and the conventional method was con-
firmed by this test, the values of the corresponding con-
ventional method are italicized. Therefore, the superiority
of our method can be confirmed from this statistical
test.
From the above subjective and quantitative evaluations,

the effectiveness of the proposed method can be verified.
As shown in the discussion of quantitative evaluation,
the calculation of features considering atmosphericmove-
ments and the use of a multiple kernel scheme are suitable
for estimation in the proposed method. Figure 8 shows
examples of the projection results of training data and
test data for the meteorological element ‘temperature on
the ground’. It can be seen that training and test samples
are almost projected orderly. Although there are over-
laps between neighboring ranks, the samples of the test
data tend to be projected with maintenance of their ranks.
Therefore, these results also reflect the effectiveness of
our method.
In order to improve the performance of the proposed

ordinal regression approach, the introduction of several
state-of-the-art methods would be useful. For example, if a
sufficient number of training samples cannot be obtained,
the introduction of transductive ordinal regression [24]
would be useful for improving the performance of the pro-
posed method. Furthermore, as the number of the mete-
orological elements becomes larger, the exhaustive search
for optimal parameters becomes difficult. In a such case,
the introduction of several other approaches for learning
kernels such as the approach in [18] may also solve this
problem. This point is discussed in detail in the following
section.

4 Conclusions
An MKDA-based ordinal regression method for estimat-
ing error degrees in numerical weather prediction was
presented in this paper. In the proposed method, KDA-
based ordinal regression is used for the estimation of
prediction error degree, and the following approaches
were newly adopted. Since multiple meteorological ele-
ments that have propagated from neighboring areas based
on atmospheric movements are related to prediction
errors in the target area, we calculated those features
from observed wind velocities and merged them by using
a multiple kernel algorithm. This improved the perfor-
mance of error degree estimation based on KDA-based
ordinal regression. Then, the proposed method enabled
successful ordinal regression, i.e., successful estimation of
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 6 Results of estimated prediction error degrees for the meteorological element ‘relative humidity on the ground’. (a) True
prediction error degrees. (b) Results of estimation by the proposed method. (c) Results of estimation by the simple KDA [13]. (d) Results of
estimation by SVM-EBC. (e) Results of estimation by SVOR-IMC. (f, g, h, i, j) Zoomed portions of (a to e), and (k, l, m, n, o) absolute differences
between the true prediction error degrees and estimated results in (f, g, h, i, j).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 7 Results of estimated prediction error degrees for the meteorological element ‘wind velocity on the ground’. (a) True prediction
error degrees. (b) Results of estimation by the proposed method. (c) Results of estimation by the simple KDA [13]. (d) Results of estimation by
SVM-EBC. (e) Results of estimation by SVOR-IMC. (f, g, h, i, j) Zoomed portions of (a, b, c, d, e) and (k, l, m, n, o) absolute differences between the
true prediction error degrees and estimated results in (f, g, h, i, j).
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Table 7 MAE-based quantitative evaluationof the
proposedmethod and conventionalmethods

Target element Ours PM-WP Ref [13] SVM-EBC SVOR-IMC

Temperature 0.4317 0.4458 0.3901c 0.3840b 0.3839a

Relative humidity 0.7856a 0.8017b 0.8384 c 0.9030 0.9041

Wind velocity 0.8654 0.9035 0.8456a 0.8645c 0.8626b

aThe best method. bThe second-best method. cThe third-best method. PM-WP,
proposed method without propagation. In addition, temperature, relative
humidity, and wind velocity respectively represent temperature on the ground,
relative humidity on the ground, and wind velocity on the ground. When the
difference between the proposed method and the conventional method was
confirmed by Welch’s t test, the values of the corresponding conventional
method are italicized.

prediction error degrees. This was also confirmed from
experimental results obtained by applying our method
and conventional methods to real data of numerical
weather prediction.
In the proposed method, it becomes difficult to adopt

the exhaustive search for determining γ when the num-
ber of meteorological elements becomes larger. Therefore,
we will have to solve this problem by using some alterna-
tive schemes. First, it would be useful to limit the number
of the meteorological elements used for estimating each
target meteorological element. This approach is similar to
the feature selection, i.e., we select the elements that are
the most useful for estimation of the target meteorolog-
ical element. It should be noted that in the experiments
described in this paper, we simply selected the three ele-
ments that tend to affect each other from the view point of
meteorology. Second, we can use some alternative selec-
tion algorithms of the best results of γ instead of the
exhaustive search. Many optimization methods that can
avoid an exhaustive search have been proposed, and a
genetic algorithm is one of the most traditional opti-
mization approaches. By using such approaches, we can
avoid an exhaustive search and enable the use of more
meteorological elements for estimating the target mete-
orological elements. Some other approaches for learning

Table 8 MSE-based quantitative evaluationof the
proposedmethod and conventionalmethods

Target element Ours PM-WP Ref [13] SVM-EBC SVOR-IMC

Temperature 0.6748a 0.6810b 0.7143c 0.7909 0.7903

Relative humidity 1.1764a 1.2392b 1.4394c 1.7269 1.7276

Wind velocity 1.4135a 1.5550c 1.5093b 1.6614 1.6543

aThe best method. bThe second-best method. cThe third-best method. PM-WP,
proposed method without propagation. In addition, temperature, relative
humidity, and wind velocity respectively represent temperature on the ground,
relative humidity on the ground, and wind velocity on the ground. When the
difference between the proposed method and the conventional method was
confirmed by Welch’s t test, the values of the corresponding conventional
method are italicized.

kernels such as the approach in [18] may also solve this
problem. This provides a solution to the problem of the
need to tune optimal kernel parameters. This method
can be easily extended to a supervised scenario, and it
has also been reported that it can outperform the con-
ventional multiple kernel learning approaches. Therefore,
the introduction of this method will improve prediction
performance.
Note that as shown in [28], it was reported that KDA-

based ordinal regression could not outperform a straight-
forward approach such as that in [29]. Therefore, we
should examine the relationship between the performance
of methods and applied datasets from simple toy data
toward a large amount of real data since we confirmed the
performance of our method by using only data obtained
in numerical weather prediction.
The above points should be examined in future work.

Appendices
Appendix 1
In this appendix, we show the proof that the final results
of the error degree estimation do not depend onC. Specif-
ically, given

min J2(α) =
K−1∑
k=1

αk
(
rk+1 − rk

)′
T−1

K−1∑
k=1

αk
(
rk+1 − rk

)

s.t. αk ≥ 0, k = 1, 2, · · · ,K − 1

K−1∑
k=1

αk = C, (28)

we denote its optimal solution as α∗. Furthermore, by
multiplying C by a positive constant λ, the following
problem can be also obtained:

min J2(αλ) =
K−1∑
k=1

αk
λ

(
rk+1 − rk

)′
T−1

K−1∑
k=1

αk
λ

(
rk+1 − rk

)

s.t. αk
λ ≥ 0, k = 1, 2, · · · ,K − 1

K−1∑
k=1

αk
λ = λC. (29)

Then, the optimal solution of αλ =
[
α1

λ, α
2
λ, · · · , αK−1

λ

]′

satisfying
∑K−1

k=1 αk
λ = λC can be obtained. Next, from the

above equations, J2(αλ) = J2(λα) = λ2J2(α). Then, the
optimal solution of Equation 29 becomes λα∗ since J2(α)

becomes minimum when α = α∗. Therefore, if we mul-



Ogawa et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:115 Page 16 of 17
http://asp.eurasipjournals.com/content/2014/1/115

Projection results

Fr
eq

ue
nc

y

(a)

Projection results

Fr
eq

ue
nc

y

(b)
Figure 8 Projection results of training and test data. These results were obtained by applying the proposed method to the data of ‘temperature
on the ground’. (a) Histogram of projection results for the training data. (b) Histogram of projection results for the test data. Since the number of the
test samples is much larger than that of the training samples, the graph of the test data becomes smoother than that of the training data.

tiply C by λ, the optimal solution also becomes λ times
larger. Consequently, since

β = 1
2
T−1

K−1∑
k=1

αk
(
rk+1 − rk

)
, (30)

β also becomes λ-times larger, and

f (x) = min
k∈{1,2,··· , K}

{
k : β ′

(
�′φ(x) − rk+1 + rk

2

)
< 0

}

(31)

does not depend on λ. From the above explanation, we
can see that the final results of the rank estimation do not
depend on C.

Appendix 2
We show the details of the statistical test shown in the
experiment section. First, we define the following evalua-
tion value:

E =
{ ∣∣y − yg

∣∣ if MAE is used(
y − yg

)2 if MSE is used
, (32)
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where y is an estimated error degree by a method, and yg is
a correct error degree (ground truth). Given twomethods,
A and B, t is defined by

t = ĒA − ĒB√
S2A
NA

+ S2B
NB

, (33)

where ĒA and ĒB are the averages of E in Equation 32 for
methods A and B, and thus, they correspond to MAE or
MSE. Furthermore, S2A and S2B are the variances of E in
methods A and B, respectively. The number of data (NA =
NB) is the same value 156,900 (= 52, 300× 3). The degree
of freedom ν is calculated as

ν =

(
S2A
NA

+ S2B
NB

)2

S4A
N2
A(NA−1) + S4B

N2
B(NB−1)

. (34)

We assume the null hypothesis ‘For the evaluation values
E obtained by the two methods A and B, the two pop-
ulation means, i.e., ĒA and ĒB, are equal’, and t follows
a t-distribution of the degree of freedom ν. When sig-
nificance level α is provided, we calculate a threshold t0
satisfying Pr {|t| ≥ t0} = α, and if |t| ≥ t0, the null hypoth-
esis is rejected. In this experiment, α is set to 0.05. In
this test, we regard the proposed method and one of the
conventional methods as methods A and B, respectively.
Note that in this experiment, the value of the threshold t0
becomes 1.96 for all cases.
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