45 research outputs found

    Effects of Dietary Distillers Dried Grains with Solubles and Soybean Meal on Extruded Pellet Characteristics and Growth Responses of Juvenile Yellow Perch

    Get PDF
    A 126-d feeding trial was performed to investigate graded combinations of distillers dried grains with solubles (DDGS) and soybean meal (SBM) in diets formulated for yellow perch Perca flavescens. Six experimental diets contained DDGS and SBM at 0 and 31.5% (dry matter basis), respectively (0/31.5 diet), 10 and 26% (10/26), 20 and 20.5% (20/20.5), 30 and 15% (30/15), 40 and 9.5% (40/9.5), and 50 and 4% (50/4) to obtain similar levels of crude protein (mean ± SE = 30.1 ± 0.2%), crude lipid (16.7 ± 0.7%), and digestible energy (13.5 ± 0.2 kJ/g). Fourteen fish (initial individual weight = 19.1 ± 0.5 g) were randomly selected and stocked into each of twenty-four 110-L tanks (4 replicate tanks/diet). Common biological and mechanical filter systems were used to recirculate the water and maintain similar water quality. Fish that received the 40/9.5 diet exhibited the highest apparent absolute weight gain and percent weight gain, while fish that were fed the 10/26, 20/20.5, 30/15, and 40/9.5 diets exhibited similar absolute weight gain. Fish that were given the 20/20.5, 30/15, and 40/9.5 diets also exhibited similar percent weight gain. Fulton’s condition factor and apparent protein digestibility were significantly lower and higher, respectively, for fish that received the 50/4 diet than for all other treatment groups. Crude protein and crude lipid levels in muscle samples did not significantly differ among treatment groups. Results indicated that yellow perch can utilize DDGS plus SBM at a combined inclusion level of up to 49.5% without negative effects on growth. The mechanical strength and color of the extruded pellets were related to the level of DDGS plus SBM in the feed blends. Hepatosomatic indices were correlated with pellet color, while protein digestibility decreased with increasing pellet strength

    Lengthening of maize maturity time is not a widespread climate change adaptation strategy in the US Midwest

    Get PDF
    Increasing temperatures in the US Midwest are projected to reduce maize yields because warmer temperatures hasten reproductive development and, as a result, shorten the grain fill period. However, there is widespread expectation that farmers will mitigate projected yield losses by planting longer season hybrids that lengthen the grain fill period. Here, we ask: (a) how current hybrid maturity length relates to thermal availability of the local climate, and (b) if farmers are shifting to longer season hybrids in response to a warming climate. To address these questions, we used county‐level Pioneer brand hybrid sales (Corteva Agriscience) across 17 years and 650 counties in 10 Midwest states (IA, IL, IN, MI, MN, MO, ND, OH, SD, and WI). Northern counties were shown to select hybrid maturities with growing degree day (GDD°C) requirements more closely related to the environmentally available GDD compared to central and southern counties. This measure, termed “thermal overlap,” ranged from complete 106% in northern counties to a mere 63% in southern counties. The relationship between thermal overlap and latitude was fit using split‐line regression and a breakpoint of 42.8°N was identified. Over the 17‐years, hybrid maturities shortened across the majority of the Midwest with only a minority of counties lengthening in select northern and southern areas. The annual change in maturity ranged from −5.4 to 4.1 GDD year−1 with a median of −0.9 GDD year−1. The shortening of hybrid maturity contrasts with widespread expectations of hybrid maturity aligning with magnitude of warming. Factors other than thermal availability appear to more strongly impact farmer decision‐making such as the benefit of shorter maturity hybrids on grain drying costs, direct delivery to ethanol biorefineries, field operability, labor constraints, and crop genetics availability. Prediction of hybrid choice under future climate scenarios must include climatic factors, physiological‐genetic attributes, socio‐economic, and operational constraints

    Alternative Transportation Energy

    Full text link
    Transportation energy issues are moving to the forefront of the public consciousness in the U.S. and particularly California, and gaining increasing attention from legislators and regulators. The three principal concerns motivating interest in transportation energy are urban air quality, oil dependence, and the threat of global warming. Transportation fuels are a principal contributor to each of these. The transportation sector, mostly motor vehicles, contributes roughly half the urban air pollutants, almost one-third of the carbon dioxide, and consumes over 60% of all petroleum

    Climate policy innovation: a sociotechnical transitions perspective

    Get PDF
    Seeking to develop a novel understanding of how climate policy innovation (CPI) emerges and spreads, we conceptualise three types of CPIs – genuinely original, diffusion based, and reframing based – and relate these to the sociotechnical transitions literature, particularly the multi-level perspective (MLP) that explains change through interaction between ‘niche’, ‘regime’, and ‘landscape’ levels. Selected climate-related transport policies in Finland, Sweden, and the UK are used to illustrate five hypotheses that connect these concepts from the MLP to particular types of CPI. ‘Original’ policy innovation may be uncommon in contexts with major sunk investments such as transport, principally because sociotechnical regimes tend to be resistant to political pressures for change originating at the same level. Nonetheless, the MLP posits that regimes are subject to influence by pressures originating at both niche and landscape levels. Given that policy reframing is relatively common, it may offer a key entry point for CPI in the short to medium term
    corecore