61,177 research outputs found
Recommended from our members
Fire resistance of steel beam to square CFST column composite joints using RC slabs: Experiments and numerical studies
In this paper, experimental investigation and numerical simulation of steel beam to square concrete-filled steel tube (CFST) column composite joints that use reinforced concrete (RC) slabs subjected to localized and global fire conditions are presented. Eight joints were tested under the ISO 834 fire standard, and the effect of different parameters including the load ratio of beams, the beam-to-column ratio of linear stiffness, and different fire scenarios was studied during testing. The failure patterns and the thermal responses of the structural members including the temperature distribution, axial displacement of columns, vertical deflection of the beam ends, and fire resistance of the joints were recorded and discussed. The results show that tube buckling of the square CFST columns, flange buckling of the steel beams, and separation between the top flange of the steel beams and the RC slabs were the primary failure patterns of this type of joint. Moreover, the temperatures of structural members within the connection zone were lower than those in the other regions. Compared with other factors, the load ratio of the beams demonstrated a significant influence on the displacement of the structural members and the fire resistance of the joints. A three-dimensional finite element analysis (FEA) model was built to simulate the fire performance of this type of composite joint. The simulation results were compared to the test results in terms of failure patterns, temperature distributions, displacements, and fire resistances, and good agreement in general was achieved. Finally, the FEA model was adopted to examine the effect of parameters on the fire resistance of the composite joints with axial and flexural constraints applied at the ends of the beam
Governance Challenges and the Financial Crisis: Seven Key Questions
In the midst of a global economic crisis, the federal government responded on an unprecedented scale and scope, with injections of trillions of dollars into financial markets, infusions of cash to troubled industries, state and local governments, and people in need. Government is employing tools in ways never before considered and inventing new tools, in the hope of stabilizing the economy and spurring economic recovery.Under the leadership of National Academy Fellow Don Kettl and National Academy President Jennifer Dorn, the National Academy of Public Administration convened a roundtable of government leaders, business leaders, researchers and other experts to discuss governance issues related to the government's response to the financial crisis. Seven strategic questions related to governance emerged from the discussion, held earlier this year, which was moderated by Don Kettl. The National Academy and the IBM Center for the Business of Government are pleased to offer this summary of the roundtable in an effort to stimulate a national discussion of these questions.Key Findings Government investments have the potential to transform the role the federal government plays in the private economy. While largely intended to be temporary, many fear that these investments will create long-term, almost "permanent" expectations -- particularly with regard to education, unemployment insurance, infrastructure and tax breaks.One challenge confronting the government is to devise exit strategies that balance policy objectives, such as minimizing economic disruption and securing a return on taxpayer dollars, while not undermining the viability of companies or their market competitors, as well as governments and other groups. Another challenge is to determine the appropriate scope of ongoing federal regulatory authority in light of both practical demands and the appropriate role of the federal government in managing the economy
Interacting Dirac fermions under spatially alternating pseudo-magnetic field: Realization of spontaneous quantum Hall effect
Both topological crystalline insulators surfaces and graphene host
multi-valley massless Dirac fermions which are not pinned to a high-symmetry
point of the Brillouin zone. Strain couples to the low-energy electrons as a
time-reversal invariant gauge field, leading to the formation of pseudo-Landau
levels (PLL). Here we study periodic pseudo-magnetic fields originating from
strain superlattices. We study the low-energy Dirac PLL spectrum induced by the
strain superlattice and analyze the effect of various polarized states. Through
self-consistent Hartree-Fock calculations we establish that, due to the strain
superlattice and PLL electronic structure, a valley-ordered state spontaneously
breaking time-reversal and realizing a quantum Hall phase is favored, while
others are suppressed.Comment: 13 pages + 2 appendices, 9 figure
Comparative study of Steel-FRP, FRP and steel reinforced coral concrete beams in their flexural performance
In this paper, a comparative study of Carbon Fiber Reinforced Polymer (CFRP) Bar and Steel-Carbon Fiber Composite Bar (SCFCB) reinforced coral concrete beams are made through a series experimental tests and theoretical analysis. The flexural capacity, crack development and failure modes of CFRP and SCFCB reinforced coral concrete were investigated in detail. They are also compared to ordinary steel reinforced coral concrete beams. The results show that under the same condition of reinforcement ratio, the SCFCB reinforced beam exhibits better performance than those of the CFRP reinforced beams, and its stiffness is slightly lower than that of the steel reinforced beam. Under the same load condition, the crack width of the SCFCB beam is between the steel reinforced beam and the CFRP bar reinforced beam. Before the steel core yields, the crack growth rate of SCFCB beam is similar to the steel reinforced beam. SCFCB has a higher strength utilization rate, about 70% -85% of its ultimate strength. The current design guidance was also examined based on the test results. It was found that the existing design specifications for FRP reinforced normal concrete is not suitable for SCFCB reinforced coral concrete structures
Effect of chain stiffness on ion distributions around a polyelectrolyte in multivalent salt solutions
Ion distributions in dilute polyelectrolyte solutions are studied by means of
Langevin dynamics simulations. We show that the distributions depend on the
conformation of a chain while the conformation is determined by the chain
stiffness and the salt concentration. We observe that the monovalent
counterions originally condensed on a chain can be replaced by the multivalent
ones dissociated from the added salt due to strong electrostatic interaction.
These newly condensed ions give an important impact on the chain structure. At
low and at high salt concentrations, the conformation of a semiflexible chain
is rodlike. The ion distributions show similarity to those for a rigid chain,
but difference to those for a flexible chain whose conformation is a coil. In
the mid-salt region, the flexible chain and the semiflexible chain collapse but
the collapsed chain structures are, respectively, disordered and ordered
structures. The ion distributions hence show different profiles for these three
chain stiffness with the curves for the semiflexible chain lying between those
for the flexible and the rigid chains. The number of the condensed multivalent
counterions, as well as the effective chain charge, also shows similar
behavior, demonstrating a direct connection with the chain morphology.
Moreover, we find that the condensed multivalent counterions form triplets with
two adjacent monomers and are localized on the chain axis at intermediate salt
concentration when the chain stiffness is semiflexible or rigid. The
microscopic information obtained here provides valuable insight to the
phenomena of DNA condensation and is very useful for researchers to develop new
models.Comment: 28 pages, 10 figures, accepted for publication in JC
Recommended from our members
Dynamic Behavior of Precast Concrete Beam-Column Sub-Assemblages with High Performance Connections Subjected to Sudden Column Removal Scenario
Unbonded posttensioned precast concrete (UPPC) structure has shown its excellent aseismic performance in laboratory tests and earthquake investigation. However, the progressive collapse behavior of UPPC subjected to column removal scenario is still unclear. To fill this knowledge gap, two 1/2 scaled UPPC beam-column sub-assemblages were tested under a penultimate column removal scenario. The dynamic test results indicated that UPPC sub-assemblages have desirable load redistribution capacity to mitigate progressive collapse. The failure modes of the sub-assemblages observed in dynamic test were quite similar to that in static counterparts
Unconventional Superconductivity and Density Waves in Twisted Bilayer Graphene
We study electronic ordering instabilities of twisted bilayer graphene with
electrons per supercell, where correlated insulator state and
superconductivity are recently observed. Motivated by the Fermi surface nesting
and the proximity to Van Hove singularity, we introduce a hot-spot model to
study the effect of various electron interactions systematically. Using
renormalization group method, we find /-wave superconductivity and
charge/spin density wave emerge as the two types of leading instabilities
driven by Coulomb repulsion. The density wave state has a gapped energy
spectrum at and yields a single doubly-degenerate pocket upon doping to
. The intertwinement of density wave and superconductivity and the
quasiparticle spectrum in the density wave state are consistent with
experimental observations.Comment: 15 pages, 12 figures; updated discussion and analysis on density wave
state
Recommended from our members
Performance of bolted steel-beam to CFST-column joints using stiffened angles in column-removal scenario
This paper presents three experimental investigations on the performance of steel-beam to CFST-column joints using stiffened angle, long bolts and fin plate under a middle column removal scenario. Three specimens were designed and tested. The failure modes and catenary action are investigated in detail. The test results show that increasing the angle plate thickness at the joint could not only improve its performance significantly, but also trigger an early formation of catenary action. Increasing the length of short-limb had influence on the deformation ability of the proposed joint, rather than the load capacity. The buckling of stiffeners could prevent the brittle failure of the joints. With the contribution of catenary action, the joint shows much higher rotation capacities than that required in DoD design guidance. The initial stiffness of the joint was calculated using an analytical model with consideration of bolt pretension. Good agreement to the test results is achieved. A numerical analysis is also carried out, whose results show that adding additional row of bolts would improve the redundancy of the joint under column loss. An equivalent dynamic response evaluation of the joints was also performed. The results show that dynamic amplification coefficient should be worked out considering catenary action under large deformation
Volume integrals associated with the inhomegeneous Helmholtz equation. Part 2: Cylindrical region; rectangular region
Results are presented for volume integrals associated with the Helmholtz operator, nabla(2) + alpha(2), for the cases of a finite cylindrical region and a region of rectangular parallelepiped. By using appropriate Taylor series expansions and multinomial theorem, these volume integrals are obtained in series form for regions r r' and r 4', where r and r' are distances from the origin to the point of observation and source, respectively. When the wave number approaches zero, the results reduce directly to the potentials of variable densities
- …
