24 research outputs found

    Illumination Driven Energy Level Realignment at Buried Interfaces between Organic Charge Transport Layers and a Lead Halide Perovskite

    Get PDF
    Tremendous progress in employing metal halide perovskites MHPs in a variety of applications, especially in photovoltaics, has been made in the past decade. To unlock the full potential of MHP materials in optoelectronic devices, an improved understanding of the electronic energy level alignment at perovskite based interfaces is required. This particularly pertains to such interfaces under device operation conditions, e.g. under illumination with visible light such as in a solar cell. Herein, it is revealed that the energy level alignment at the buried interface between a double cation lead halide perovskite film and charge selective organic transport layers changes upon white light illumination. This is found from photoemission experiments performed with the samples in dark and under illumination, and the interfacial energy level shift is reversible. The underlying mechanism is attributed to the accumulation of one charge carrier type within the perovskite film at the interface under illumination, as a result of the charge selective nature of the organic layer. The fact that the interfacial energy level alignment at MHP based junctions under illumination can differ from that in dark is to be taken into account to fully rationalize device characteristic

    Position locking of volatile reaction products by atmosphere and capping layers slows down photodecomposition of methylammonium lead triiodide perovskite

    Get PDF
    The remarkable progress of metal halide perovskites in photovoltaics has led to the power conversion efficiency approaching 26%. However, practical applications of perovskite-based solar cells are challenged by the stability issues, of which the most critical one is photo-induced degradation. Bare CH(3)NH(3)PbI(3) perovskite films are known to decompose rapidly, with methylammonium and iodine as volatile species and residual solid PbI(2) and metallic Pb, under vacuum under white light illumination, on the timescale of minutes. We find, in agreement with previous work, that the degradation is non-uniform and proceeds predominantly from the surface, and that illumination under N(2) and ambient air (relative humidity 20%) does not induce substantial degradation even after several hours. Yet, in all cases the release of iodine from the perovskite surface is directly identified by X-ray photoelectron spectroscopy. This goes in hand with a loss of organic cations and the formation of metallic Pb. When CH(3)NH(3)PbI(3) films are covered with a few nm thick organic capping layer, either charge selective or non-selective, the rapid photodecomposition process under ultrahigh vacuum is reduced by more than one order of magnitude, and becomes similar in timescale to that under N(2) or air. We conclude that the light-induced decomposition reaction of CH(3)NH(3)PbI(3), leading to volatile methylammonium and iodine, is largely reversible as long as these products are restrained from leaving the surface. This is readily achieved by ambient atmospheric pressure, as well as a thin organic capping layer even under ultrahigh vacuum. In addition to explaining the impact of gas pressure on the stability of this perovskite, our results indicate that covalently “locking” the position of perovskite components at the surface or an interface should enhance the overall photostability

    Understanding Performance Limiting Interfacial Recombination in pin Perovskite Solar Cells

    Get PDF
    Funder: Alexander von Humboldt Foundation; Id: http://dx.doi.org/10.13039/100005156Abstract: Perovskite semiconductors are an attractive option to overcome the limitations of established silicon based photovoltaic (PV) technologies due to their exceptional opto‐electronic properties and their successful integration into multijunction cells. However, the performance of single‐ and multijunction cells is largely limited by significant nonradiative recombination at the perovskite/organic electron transport layer junctions. In this work, the cause of interfacial recombination at the perovskite/C60 interface is revealed via a combination of photoluminescence, photoelectron spectroscopy, and first‐principle numerical simulations. It is found that the most significant contribution to the total C60‐induced recombination loss occurs within the first monolayer of C60, rather than in the bulk of C60 or at the perovskite surface. The experiments show that the C60 molecules act as deep trap states when in direct contact with the perovskite. It is further demonstrated that by reducing the surface coverage of C60, the radiative efficiency of the bare perovskite layer can be retained. The findings of this work pave the way toward overcoming one of the most critical remaining performance losses in perovskite solar cells

    hElp3 Directly Modulates the Expression of HSP70 Gene in HeLa Cells via HAT Activity

    Get PDF
    Human Elongator complex, which plays a key role in transcript elongation in vitro assay, is incredibly similar in either components or function to its yeast counterpart. However, there are only a few studies focusing on its target gene characterization in vivo. We studied the effect of down-regulation of the human elongation protein 3 (hELP3) on the expression of HSP70 through antisense strategy. Transfecting antisense plasmid p1107 into HeLa cells highly suppressed hELP3 expression, and substantially reduced expression of HSP70 mRNA and protein. Furthermore, chromatin immunoprecipitation assay (ChIP Assay) revealed that hElp3 participates in the transcription elongation of HSPA1A in HeLa cells. Finally, complementation and ChIP Assay in yeast showed that hElp3 can not only complement the growth and slow activation of HSP70 (SSA3) gene transcription, but also directly regulates the transcription of SSA3. On the contrary, these functions are lost when the HAT domain is deleted from hElp3. These data suggest that hElp3 can regulate the transcription of HSP70 gene, and the HAT domain of hElp3 is essential for this function. These findings now provide novel insights and evidence of the functions of hELP3 in human cells

    The Elongator Complex Interacts with PCNA and Modulates Transcriptional Silencing and Sensitivity to DNA Damage Agents

    Get PDF
    Histone chaperones CAF-1 and Asf1 function to deposit newly synthesized histones onto replicating DNA to promote nucleosome formation in a proliferating cell nuclear antigen (PCNA) dependent process. The DNA replication- or DNA repair-coupled nucleosome assembly pathways are important for maintenance of transcriptional gene silencing and genome stability. However, how these pathways are regulated is not well understood. Here we report an interaction between the Elongator histone acetyltransferase and the proliferating cell nuclear antigen. Cells lacking Elp3 (K-acetyltransferase Kat9), the catalytic subunit of the six-subunit Elongator complex, partially lose silencing of reporter genes at the chromosome VIIL telomere and at the HMR locus, and are sensitive to the DNA replication inhibitor hydroxyurea (HU) and the damaging agent methyl methanesulfonate (MMS). Like deletion of the ELP3, mutation of each of the four other subunits of the Elongator complex as well as mutations in Elp3 that compromise the formation of the Elongator complex also result in loss of silencing and increased HU sensitivity. Moreover, Elp3 is required for S-phase progression in the presence of HU. Epistasis analysis indicates that the elp3Δ mutant, which itself is sensitive to MMS, exacerbates the MMS sensitivity of cells lacking histone chaperones Asf1, CAF-1 and the H3 lysine 56 acetyltransferase Rtt109. The elp3Δ mutant has allele specific genetic interactions with mutations in POL30 that encodes PCNA and PCNA binds to the Elongator complex both in vivo and in vitro. Together, these results uncover a novel role for the intact Elongator complex in transcriptional silencing and maintenance of genome stability, and it does so in a pathway linked to the DNA replication and DNA repair protein PCNA

    Defects in tRNA Modification Associated with Neurological and Developmental Dysfunctions in Caenorhabditis elegans Elongator Mutants

    Get PDF
    Elongator is a six subunit protein complex, conserved from yeast to humans. Mutations in the human Elongator homologue, hELP1, are associated with the neurological disease familial dysautonomia. However, how Elongator functions in metazoans, and how the human mutations affect neural functions is incompletely understood. Here we show that in Caenorhabditis elegans, ELPC-1 and ELPC-3, components of the Elongator complex, are required for the formation of the 5-carbamoylmethyl and 5-methylcarboxymethyl side chains of wobble uridines in tRNA. The lack of these modifications leads to defects in translation in C. elegans. ELPC-1::GFP and ELPC-3::GFP reporters are strongly expressed in a subset of chemosensory neurons required for salt chemotaxis learning. elpc-1 or elpc-3 gene inactivation causes a defect in this process, associated with a posttranscriptional reduction of neuropeptide and a decreased accumulation of acetylcholine in the synaptic cleft. elpc-1 and elpc-3 mutations are synthetic lethal together with those in tuc-1, which is required for thiolation of tRNAs having the 5′methylcarboxymethyl side chain. elpc-1; tuc-1 and elpc-3; tuc-1 double mutants display developmental defects. Our results suggest that, by its effect on tRNA modification, Elongator promotes both neural function and development

    The Electronic Properties of a 2D Ruddlesden Popper Perovskite and its Energy Level Alignment with a 3D Perovskite Enable Interfacial Energy Transfer

    No full text
    The success of using 2D Ruddlesden Popper metal halide perovskites MHPs in optoelectronic devices has ignited great interest as means for energy level tuning at the interface with 3D MHPs. Inter alia, the application of 2D phenylethylammonium lead quaternary iodide PEA2PbI4 3D MHPs interfaces has improved various optoelectronic devices, where a staggered type II energy level alignment is often assumed. However, a type II heterojunction seems to contradict the enhanced photoluminescence observed for 2D PEA2PbI4 3D MHP interfaces, which raises fundamental questions about the electronic properties of such junctions. In this study, using direct and inverse photoelectron spectroscopy, it is revealed that a straddling type I energy level alignment is present at 2D PEA2PbI4 3D methylammonium lead triiodide MAPbI3 interfaces, thus explaining that the photoluminescence enhancement of the 3D perovskite is induced by energy transfer from the 2D perovskite. These results provide a reliable fundamental understanding of the electronic properties at the investigated 2D 3D MHP interfaces and suggest careful re consideration of the electronic properties of other 2D 3D MHP heterostructure

    Characterization of a Six-Subunit Holo-Elongator Complex Required for the Regulated Expression of a Group of Genes in Saccharomyces cerevisiae

    No full text
    The Elongator complex associated with elongating RNA polymerase II in Saccharomyces cerevisiae was originally reported to have three subunits, Elp1, Elp2, and Elp3. Using the tandem affinity purification (TAP) procedure, we have purified a six-subunit yeast Holo-Elongator complex containing three additional polypeptides, which we have named Elp4, Elp5, and Elp6. TAP tapping and subsequent purification of any one of the six subunits result in the isolation of all six components. Purification of Elongator in higher salt concentrations served to demonstrate that the complex could be separated into two subcomplexes: one consisted of Elp1, -2, and -3, and the other consisted of Elp4, -5, and -6. Deletions of the individual genes encoding the new Elongator subunits showed that only the ELP5 gene is essential for growth. Disruption of the two nonessential new Elongator-encoding genes, ELP4 and ELP6, caused the same phenotypes observed with knockouts of the original Elongator-encoding genes. Results of microarray analyses demonstrated that the gene expression profiles of strains containing deletions of genes encoding subunits of either Elongator subcomplex, in which we detected significantly altered mRNA expression levels for 96 genes, are very similar, implying that all the Elongator subunits likely function together to regulate a group of S. cerevisiae genes in vivo
    corecore