969 research outputs found
Solving for Micro- and Macro- Scale Electrostatic Configurations Using the Robin Hood Algorithm
We present a novel technique by which highly-segmented electrostatic
configurations can be solved. The Robin Hood method is a matrix-inversion
algorithm optimized for solving high density boundary element method (BEM)
problems. We illustrate the capabilities of this solver by studying two
distinct geometry scales: (a) the electrostatic potential of a large volume
beta-detector and (b) the field enhancement present at surface of electrode
nano-structures. Geometries with elements numbering in the O(10^5) are easily
modeled and solved without loss of accuracy. The technique has recently been
expanded so as to include dielectrics and magnetic materials.Comment: 40 pages, 20 figure
Determinação da cor do solo a partir de dados radiométricos e sua relação com teores de hematita.
Color is widely recognized as a primary identifying parameter of soil. The physical, mineralogical, and chemical properties can be derived from assessing the subsurface color characteristics. The present research aimed to estimating the hematite content clay fraction, in laboratory, from data related to soil color obtained by using automatic devices. Fifteen subsurface soil samples from São Paulo State had their clay fraction hematite contents semiquantitavely determined by the association of chemical and physical methods and their colors evaluated in laboratory through measurements made with a spectro-radiometer. The radiometric data were used to the determination of soil color in L*a*b* and Munsell systems and to the calculation of reddish indexes (RI). The RI values show functional dependence of hematite contents and the best relation is verified with RI values derived from color determined in the L*a*b* system. Exponential models, developed from remote sensors, show themselves adequate in predicting the soil hematite contents
Neurophysiological and BOLD signal uncoupling of giant somatosensory evoked potentials in progressive myoclonic epilepsy: a case-series study
In progressive myoclonic epilepsy (PME), a rare epileptic syndrome caused by a variety of genetic disorders, the combination of peripheral stimulation and functional magnetic resonance imaging (fMRI) can shed light on the mechanisms underlying cortical dysfunction. The aim of the study is to investigate sensorimotor network modifications in PME by assessing the relationship between neurophysiological findings and blood oxygen level dependent (BOLD) activation. Somatosensory-evoked potential (SSEP) obtained briefly before fMRI and BOLD activation during median-nerve electrical stimulation were recorded in four subjects with typical PME phenotype and compared with normative data. Giant scalp SSEPs with enlarger N20-P25 complex compared to normal data (mean amplitude of 26.2\u2009\ub1\u20098.2\u2009\u3bcV after right stimulation and 27.9\u2009\ub1\u20093.7\u2009\u3bcV after left stimulation) were detected. Statistical group analysis showed a reduced BOLD activation in response to median nerve stimulation in PMEs compared to controls over the sensorimotor (SM) areas and an increased response over subcortical regions (p\u2009\u20092.3, corrected). PMEs show dissociation between neurophysiological and BOLD findings of SSEPs (giant SSEP with reduced BOLD activation over SM). A direct pathway connecting a highly restricted area of the somatosensory cortex with the thalamus can be hypothesized to support the higher excitability of these areas
-Decay Spectrum, Response Function and Statistical Model for Neutrino Mass Measurements with the KATRIN Experiment
The objective of the Karlsruhe Tritium Neutrino (KATRIN) experiment is to
determine the effective electron neutrino mass with an
unprecedented sensitivity of (90\% C.L.) by precision electron
spectroscopy close to the endpoint of the decay of tritium. We present
a consistent theoretical description of the electron energy spectrum in
the endpoint region, an accurate model of the apparatus response function, and
the statistical approaches suited to interpret and analyze tritium
decay data observed with KATRIN with the envisaged precision. In addition to
providing detailed analytical expressions for all formulae used in the
presented model framework with the necessary detail of derivation, we discuss
and quantify the impact of theoretical and experimental corrections on the
measured . Finally, we outline the statistical methods for
parameter inference and the construction of confidence intervals that are
appropriate for a neutrino mass measurement with KATRIN. In this context, we
briefly discuss the choice of the energy analysis interval and the
distribution of measuring time within that range.Comment: 27 pages, 22 figures, 2 table
The Future of Neutrino Mass Measurements: Terrestrial, Astrophysical, and Cosmological Measurements in the Next Decade. Highlights of the NuMass 2013 Workshop. Milano, Italy, February 4 - 7, 2013
The third Workshop of the NuMass series ("The Future of Neutrino Mass
Measurements: Terrestrial, Astrophysical, and Cosmological Measurements in the
Next Decade: NuMass 2013") was held at Dipartimento di Fisica "G. Occhialini,
University of Milano-Bicocca in Milano, Italy, on 4-7 February 2013. The goal
of this international workshop was to review the status and future of direct
and indirect neutrino mass measurements in the laboratory as well as from
astrophysical and cosmological observations. This paper collects most of the
contributions presented during the Workshop
Potential for Supernova Neutrino Detection in MiniBooNE
The MiniBooNE detector at Fermilab is designed to search for oscillation appearance at and to make a
decisive test of the LSND signal. The main detector (inside a veto shield) is a
spherical volume containing 0.680 ktons of mineral oil. This inner volume,
viewed by 1280 phototubes, is primarily a \v{C}erenkov medium, as the
scintillation yield is low. The entire detector is under a 3 m earth
overburden. Though the detector is not optimized for low-energy (tens of MeV)
events, and the cosmic-ray muon rate is high (10 kHz), we show that MiniBooNE
can function as a useful supernova neutrino detector. Simple trigger-level cuts
can greatly reduce the backgrounds due to cosmic-ray muons. For a canonical
Galactic supernova at 10 kpc, about 190 supernova
events would be detected. By adding MiniBooNE to the international network of
supernova detectors, the possibility of a supernova being missed would be
reduced. Additionally, the paths of the supernova neutrinos through Earth will
be different for MiniBooNE and other detectors, thus allowing tests of
matter-affected mixing effects on the neutrino signal.Comment: Added references, version to appear in PR
A Monte Carlo simulation of the Sudbury Neutrino Observatory proportional counters
The third phase of the Sudbury Neutrino Observatory (SNO) experiment added an
array of 3He proportional counters to the detector. The purpose of this Neutral
Current Detection (NCD) array was to observe neutrons resulting from
neutral-current solar neutrino-deuteron interactions. We have developed a
detailed simulation of the current pulses from the NCD array proportional
counters, from the primary neutron capture on 3He through the NCD array
signal-processing electronics. This NCD array Monte Carlo simulation was used
to model the alpha-decay background in SNO's third-phase 8B solar-neutrino
measurement.Comment: 38 pages; submitted to the New Journal of Physic
Effects of new physics in neutrino oscillations in matter
A new flavor changing electron neutrino interaction with matter would always
dominate the nu_e oscillation probability at sufficiently high neutrino
energies. Being suppressed by theta_{13}, the energy scale at which the new
effect starts to be relevant may be within the reach of realistic experiments,
where the peculiar dependence of the signal with energy could give rise to a
clear signature in the nu_e --> nu_tau channel. The latter could be observed by
means of a coarse large magnetized detector by exploiting tau --> mu decays. We
discuss the possibility of identifying or constraining such effects with a high
energy neutrino factory. We also comment on the model independent limits on
them.Comment: 11 pages, 5 figure
- …
