256 research outputs found

    Adaptability of old Italian flint maize (Zea mays L.) varieties to different weed control systems

    Get PDF
    The current diffusion of high-yielding hybrid maize varieties has relegated old Italian flint varieties for polenta dishes to domestic scale. However, increasing demands for traditional foods as well as the exploitation of the local biodiversity furnish the base for the rediscovery of old flint varieties. Their cultivation represents an important source of income for low-input agricultural systems, marginal areas and organic systems. Information is currently lacking on the management of old flint varieties. This article provides information on the management of three flint maize varieties, concerning yield level and the adaptations found under chemical and mechanical weed control methods. The varieties Marano, Nostrano dell'Isola, Pignoletto and Ottofile were described and evaluated. The varieties assayed were shown to completely recover from damage caused by mechanical weed control means and to tolerate herbicide treatment with foramsulfuron and bromoxynil. In our study we observed increasing presence of..

    multiple pulmonary and multivesicular interatrial septum hydatid cysts in a native italian patient

    Get PDF
    Multivesicular, pulmonary and cardiac hydatidosis are rarely observed and can give rise to serious complications. Cysts can remain asymptomatic for a long time, until they reveal themselves perforating into cardiac chambers and/or pulmonary arteries or the systemic circulation. A rare case of multivesicular interatrial septum hydatid cyst with multiple pulmonary involvement in a native Italian farm labourer is reported. Clinical, radiological, serological and histological findings are described. MR imaging showed the exact anatomic location and the multivesicular nature of the cardiac cyst and was useful in planning surgical treatment. A successful outcome was achieved with a combination of pre- and post-operative albendazole therapy and a three-step surgery procedure. The patient made a rapid recovery and his post-operative period was totally uneventful. This case highlights the importance of an early multidisciplinary surgical approach and long-term chemotherapy treatment of this serious and rare disease. MR Imaging was crucial in the pre-surgical and follow-up observations

    Delayed-onset heparin-induced thrombocytopenia presenting with multiple arteriovenous thromboses: case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Delayed-onset heparin-induced thrombocytopenia with thrombosis, albeit rare, is a severe side effect of heparin exposure. It can occur within one month after coronary artery bypass grafting (CABG) with manifestation of different thrombotic events.</p> <p>Case presentation</p> <p>A 59-year-old man presented with weakness, malaise, bilateral lower limb pitting edema and a suspected diagnosis of deep vein thrombosis 18 days after CABG. Heparin infusion was administered as an anticoagulant. Clinical and paraclinical work-up revealed multiple thrombotic events (stroke, renal failure, deep vein thrombosis, large clots in heart chambers) and 48 ×10<sup>3</sup>/μl platelet count, whereupon heparin-induced thrombocytopenia was suspected. Heparin was discontinued immediately and an alternative anticoagulant agent was administered, as a result of which platelet count recovered. Heparin-induced thrombocytopenia, which causes thrombosis, is a serious side effect of heparin therapy. It is worthy of note that no case of delayed-onset heparin-induced thrombocytopenia with thrombosis associated with cardiopulmonary bypass surgery has thus far been reported in Iran.</p> <p>Conclusion</p> <p>Delayed-onset heparin-induced thrombocytopenia should be suspected in any patient presenting with arterial or venous thromboembolic disorders after recent heparin therapy, even though the heparin exposure dates back to more than a week prior to presentation; and it should be ruled-out before the initiation of heparin therapy.</p

    Cytoplasmic p53 couples oncogene-driven glucose metabolism to apoptosis and is a therapeutic target in glioblastoma.

    Get PDF
    Cross-talk among oncogenic signaling and metabolic pathways may create opportunities for new therapeutic strategies in cancer. Here we show that although acute inhibition of EGFR-driven glucose metabolism induces only minimal cell death, it lowers the apoptotic threshold in a subset of patient-derived glioblastoma (GBM) cells. Mechanistic studies revealed that after attenuated glucose consumption, Bcl-xL blocks cytoplasmic p53 from triggering intrinsic apoptosis. Consequently, targeting of EGFR-driven glucose metabolism in combination with pharmacological stabilization of p53 with the brain-penetrant small molecule idasanutlin resulted in synthetic lethality in orthotopic glioblastoma xenograft models. Notably, neither the degree of EGFR-signaling inhibition nor genetic analysis of EGFR was sufficient to predict sensitivity to this therapeutic combination. However, detection of rapid inhibitory effects on [18F]fluorodeoxyglucose uptake, assessed through noninvasive positron emission tomography, was an effective predictive biomarker of response in vivo. Together, these studies identify a crucial link among oncogene signaling, glucose metabolism, and cytoplasmic p53, which may potentially be exploited for combination therapy in GBM and possibly other malignancies

    Genome-Wide Interactions with Dairy Intake for Body Mass Index in Adults of European Descent

    Get PDF
    Scope: Body weight responds variably to the intake of dairy foods. Genetic variation may contribute to inter‐individual variability in associations between body weight and dairy consumption. Methods and results: A genome‐wide interaction study to discover genetic variants that account for variation in BMI in the context of low‐fat, high‐fat and total dairy intake in cross‐sectional analysis was conducted. Data from nine discovery studies (up to 25 513 European descent individuals) were meta‐analyzed. Twenty‐six genetic variants reached the selected significance threshold (p‐interaction \u3c10−7), and six independent variants (LINC01512‐rs7751666, PALM2/AKAP2‐rs914359, ACTA2‐rs1388, PPP1R12A‐rs7961195, LINC00333‐rs9635058, AC098847.1‐rs1791355) were evaluated meta‐analytically for replication of interaction in up to 17 675 individuals. Variant rs9635058 (128 kb 3’ of LINC00333) was replicated (p‐interaction = 0.004). In the discovery cohorts, rs9635058 interacted with dairy (p‐interaction = 7.36 × 10−8) such that each serving of low‐fat dairy was associated with 0.225 kg m−2 lower BMI per each additional copy of the effect allele (A). A second genetic variant (ACTA2‐rs1388) approached interaction replication significance for low‐fat dairy exposure. Conclusion: Body weight responses to dairy intake may be modified by genotype, in that greater dairy intake may protect a genetic subgroup from higher body weight

    The Impact of Small Molecule Binding on the Energy Landscape of the Intrinsically Disordered Protein C-Myc

    Get PDF
    Intrinsically disordered proteins are attractive therapeutic targets owing to their prevalence in several diseases. Yet their lack of well-defined structure renders ligand discovery a challenging task. An intriguing example is provided by the oncoprotein c-Myc, a transcription factor that is over expressed in a broad range of cancers. Transcriptional activity of c-Myc is dependent on heterodimerization with partner protein Max. This protein-protein interaction is disrupted by the small molecule 10058-F4 (1), that binds to monomeric and disordered c-Myc. To rationalize the mechanism of inhibition, structural ensembles for the segment of the c-Myc domain that binds to 1 were computed in the absence and presence of the ligand using classical force fields and explicit solvent metadynamics molecular simulations. The accuracy of the computed structural ensembles was assessed by comparison of predicted and measured NMR chemical shifts. The small molecule 1 was found to perturb the composition of the apo equilibrium ensemble and to bind weakly to multiple distinct c-Myc conformations. Comparison of the apo and holo equilibrium ensembles reveals that the c-Myc conformations binding 1 are already partially formed in the apo ensemble, suggesting that 1 binds to c-Myc through an extended conformational selection mechanism. The present results have important implications for rational ligand design efforts targeting intrinsically disordered proteins

    Interactions of dietary whole-grain intake with fasting glucose- and insulin-related genetic loci in individuals of European descent: a meta-analysis of 14 cohort studies.

    Get PDF
    OBJECTIVE: Whole-grain foods are touted for multiple health benefits, including enhancing insulin sensitivity and reducing type 2 diabetes risk. Recent genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs) associated with fasting glucose and insulin concentrations in individuals free of diabetes. We tested the hypothesis that whole-grain food intake and genetic variation interact to influence concentrations of fasting glucose and insulin. RESEARCH DESIGN AND METHODS: Via meta-analysis of data from 14 cohorts comprising ∼ 48,000 participants of European descent, we studied interactions of whole-grain intake with loci previously associated in GWAS with fasting glucose (16 loci) and/or insulin (2 loci) concentrations. For tests of interaction, we considered a P value <0.0028 (0.05 of 18 tests) as statistically significant. RESULTS: Greater whole-grain food intake was associated with lower fasting glucose and insulin concentrations independent of demographics, other dietary and lifestyle factors, and BMI (β [95% CI] per 1-serving-greater whole-grain intake: -0.009 mmol/l glucose [-0.013 to -0.005], P < 0.0001 and -0.011 pmol/l [ln] insulin [-0.015 to -0.007], P = 0.0003). No interactions met our multiple testing-adjusted statistical significance threshold. The strongest SNP interaction with whole-grain intake was rs780094 (GCKR) for fasting insulin (P = 0.006), where greater whole-grain intake was associated with a smaller reduction in fasting insulin concentrations in those with the insulin-raising allele. CONCLUSIONS: Our results support the favorable association of whole-grain intake with fasting glucose and insulin and suggest a potential interaction between variation in GCKR and whole-grain intake in influencing fasting insulin concentrations
    corecore